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Abstract
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Chapter 1

Introduction

This project is about anonymous communication in computer networks, e.g. the Internet.
The need for anonymity is becoming more and more apparent as the different uses of and the
number of users on the Internet grows rapidly. We believe the main motivation for anony-
mous communication is free speech. The political and ethical implications of anonymity
in computer networks have been discussed in e.g. Free Haven [Din], The Eternity Ser-
vice [And96] and YÅPS [Boe03], but only the technical issues surrounding anonymity in
the Internet will be discussed in this report.

Most work on anonymity is based on one paper written by David Chaum in 1981 [Cha81]. In
this paper, Chaum presents a technique called mix-networks that allow for a user A to anony-
mously send a messsage through the mix-network to another user B (and for B to respond
anonymously to A). This technique has been widely used for different applications, such as
web browsing and email, publication/file storage systems, and frameworks for providing
generic, anonymous communication over TCP/IP.

Another technique, the Dining Cryptographers-network, DC-network, presented by Chaum
in 1988 [Cha88] has receieved less attention although the technique can be unconditionally se-
cure (as described in section 2.3). The reason for the low interest in DC-networks is most
likely due to the higher network cost. Chaum himself, however, suggests methods for
more practical DC-networks which weakens the anonymity properties but achieves stronger
anonymity properties than mix-networks.

In this thesis we present Accordion, a low-latency, anonymous, peer-to-peer file storage sys-
tem based on practical and efficient DC-networks. Accordion thus achieves strong anonymity
properties and low-latency retrievals of files. The system works in a true peer-to-peer set-
ting and is based on an existing routing layer. The focus when designing Accordion has been
more on anonymity and less on e.g. functionality aspects.

In the same area as anonymous file storage systems exists anonymous publication systems.
There is no well-defined distinction of the two but we see anonymous publication focusing
more on only documents and resisting censorship on these and file storage as a generic
service to store files of all types but without necessarily providing censorship-resistance.

7



CHAPTER 1. INTRODUCTION 8

Thus the focus of this work will be on anonymity.

The rest of this chapter presents some terminology that will be used in the rest of the report.
A common terminology types eases reading and enables direct comparison of techniques.

Chapter 2 first presents some basic techniques for achieving different types of anonymity
under different assumptions. Second, a brief survey of anonymity in peer-to-peer systems is
presented. Finally, the anonymity properties of the techniques are summarized.

Based on the description of techniques and the survey of systems, Chapter 3 presents the de-
sign of Accordion, including its anonymity properties and a comparison with related work.

Chapter 4 gives an overview of the implementation of a proof-of-concept application of Ac-
cordion and presents tests to convince the reader of the correctness of the design.

Chapter 5 concludes and presents some challenges in anonymous communication in com-
puter networks.

1.1 Terminology

Pfitzmann and Köhntopp[KP01] define anonymity as:

Anonymity is the state of being not identifiable within a set of subjects, the anonymity set.

The anonymity set is the set of all possible subjects who might cause an action.

This work does not attempt to give a formal model of anonymity properties of different
techniques or systems. Serjantov [Ser04] presents a model based on entropy for measuring
anonymity in certain types of systems (mix-networks). Incorporating such a model into this
work is, however, out of scope.

1.1.1 Anonymity Types

Most existing literature agrees on at least two types of anonymity (or “actions”): sender and
recipient anonymity. Sender anonymity is defined as:

Sender anonymity is the property that a particular message is not linkable to any sender and that to
a particular sender, no message is linkable.

Recipient anonymity is defined equivalently. The sender is the only entity that knows the
identity of the recipient.

In the case that a node’s sender anonymity has been broken and another node’s recipient
anonymity has been broken, unlinkability may still be achieved for the message sent by the
sender and received by the recipient:

If a node A sends a message M and a node B receives M but it cannot be determined whether the



CHAPTER 1. INTRODUCTION 9

message sent by A is the same as the message received by B, then A and B achieve unlinkability for
M.

A type of anonymity used in bi-directional communication is responder anonymity:

The recipient of a message M does not know the identity of the sender of M to which it replies.

A stronger type of anonymity is unobservability:

Unobservability is the state of sending or receiving a particular message being indistinguishable from
sending or receiving any message at all.

This means that “real” messages are not discernible from other messages, e.g. “dummy
messages” (also known as “white noise”). In this context a “message” refers to an application
level message and not e.g an IP-packet.

By this definition, it follows that if unobservability is achieved then so is anonymity because
“a particular message” cannot be distinguished from a dummy message. Unlinkability fol-
lows since although it can be determined that the packets sent by A are the same as the
packets received by B, it cannot be determined what constitutes a “message” and thereby
that A sent a message. Hence, there is no message to link.

1.1.2 Adversary Types

Adversaries are entities that in some way try to break the anonymity of a communication,
ie. identify the endpoints of the communication, establish a link between a message sent by
one node and received by another (ie. break unlinkability) or determine that a message is be-
ing sent (ie. break unobservability). Adversaries can take on many different forms ranging
from governments or major corporations with almost unlimited resources to small compa-
nies or individuals. An adversary can thus either be considered computationally limited or
unlimited. An anonymizing system is unconditionally (or information-theoretic) secure if not
even an computationally unlimited adversary can break the anonymity of the system and
only computationally secure if either a limited or an unlimited adversary is able to break the
anonymity of the system.

In this work two computationally limited adversary types will be considered (see below). It
is assumed that none of these are able to break standard encryption algorithms such as 3-
DES, AES or RSA or secret-key exchange algorithms such as Diffie-Hellmann by performing
e.g. cryptanalytic or man-in-the-middle (MiM) attacks on these.

Passive A passive adversary has the ability to observe traffic on both the incoming and
outgoing links of some nodes in the total set of nodes.

Active An active adversary has the ability to block or insert traffic on some links and to
compromise some nodes.

Each time an adversary is mentioned in the rest of this report, the abilities of the specific



CHAPTER 1. INTRODUCTION 10

adversary will be specified, i.e., which links or nodes the adversary is able to observe traffic
on or compromise, respectively.

1.1.3 Types of Attacks

Just as adversaries can take on many forms so can the types of attacks that an anonymizing
system must be able to withstand. Attacks on such systems can be divided into the following
categories:

Technical. Performing attacks by e.g. observing or modifying network traffic or compro-
mising nodes.

Social. As mentioned in previous literature on the subject of anonymity and censorship-
resistance, e.g., FreeHaven [Din] people could claim that by taking part in such a net-
work participants are helping terrorists communicate or people in downloading ques-
tionable or illegal material and apply social pressure on the people that run system
nodes.

Political/legal. Governments or courts could decide to make it illegal to use or participate
in the anonymizing system.

Physical. Nodes could be shut down or physically destroyed.

Some technical attacks where a passive adversary observes network traffic can be avoided
by using payload encryption. Payload encryption refers to encryption of the payload of a TCP
packet with a previously exchanged symmetric key exchanged using a secret-key exchange
algorithm. Therefore, a passive adversary will be able to determine the destination appli-
cation by observing the destination port number (because it appears in unencrypted form),
but the same adversary will be unable to determine the contents of the packet.

It is noted, however, that merely hiding the contents of a message is not the same as protecting
the identity of the sender or recipient of a message, but can protect against the adversary
learning what anonymity is broken for (the adversary is thus only able to break anonymity
for some message).

Only technical attacks will be considered in the following. Technical attacks on an anonymiz-
ing system can be divided into:

Attacks on functionality. In some way not following the intended protocol by e.g. not for-
warding traffic, deleting data, etc.

Attacks on anonymity. Reducing the anonymity set of either the sender or recipient of a
message by performing various attacks.

Functionality in an anonymizing system can be broken in many different ways and is of
course dependent on the purpose of the system in question.
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Pfitzmann and Köhntopp’s anonymity set metric will not be used to measure the degree of
anonymity an anonymizing system can achieve. Rather, specific attacks and their impacts
on different anonymity types are described.



Chapter 2

Anonymity

A basic anonymizing system works as illustrated in Figure 2.1.

Figure 2.1: A basic anonymizing system where a user A sends a message to another user B through
the system.

In this basic setting, A number of users – not part of the anonymizing system – send mes-
sages to and receive messages from the anonymizing system containing one or more system
nodes responsible for the anonymization. In some settings users are part of the anonymizing
system, ie. users are capable of taking part in anonymizing a message. This includes two
techniques described in section 2.3 and 2.4, respectively, and peer-to-peer networks. A brief
description of the effect of applying peer-to-peer technology to an anonymizing system is
described in section 2.5.

The overall purpose of this chapter is to describe the ways in which a message can be
sent anonymously by A (ie. sender anonymity), received anonymously by B (ie. recipi-
ent anonymity), how the sending of a message by A and the receival of the same message by
B can remain unlinkable, how B can respond anonymously to A and finally how the send-
ing or receival of a message can be unobservable. This chapter also serves as motivation
for the design of an anonymous, peer-to-peer file storage system, Accordion, presented in
Chapter 3.

Anonymizing systems can be designed using one or more of four techniques:

12



CHAPTER 2. ANONYMITY 13

• Proxy (Single, forwarding node)

• Mix-networks

• DC-networks

• Broadcasting

In anonymizing systems built on the proxy or mix-network techniques, a basic attack is
possible:

Wiretapper Attack A passive adversary observing messages on, wiretapping, both the in-
coming and outgoing link of a node and observing one or more messages on the outgoing
link but no messages on the incoming link, will be able to prove that that node was the sender
of the message because no other node could have sent it and thus break the node’s sender
anonymity. The attack can be performed even if (payload) encryption is used, but in that
case the adversary will not be able to tell what the node is sending and will thus only break
its sender anonymity for some message.

In anonymizing systems where users are not part of the system (proxy, mix-networks and
non-peer-to-peer) another basic attack is possible:

Edge Attack a passive adversary observing traffic on the incoming link of the first node
in the system or the outgoing link of the last node in the system or alternatively an active
adversary controlling the first or the last node in the system (by e.g. having compromised it)
will be able to break the sender or recipient anonymity of the node it receives a message from
or sends a message to, merely by looking at the source or destination field in the message,
respectively, and knowledge that this node is not a system node. As in the wiretapper attack,
if encryption is used, the adversary will only know that it broke the node’s anonymity for
some message.

In general, a passive adversary performing either a wiretapper or an edge attack in an
anonymizing system built on either the proxy or mix-network technique or a system where
users are not part of the system, sender- and/or recipient anonymity is broken. The wire-
tapper attack, however, is hard to perform on arbitrary nodes because it requires that the
adversary can observe messages on the local network the node in question is a part of.

2.1 Proxy (Single, forwarding node)

A simple anonymizing system is one in which a user A sends a message Msg through a
single, forwarding node known as a proxy, or a trusted third party. This is illustrated in
figure 2.2.
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Figure 2.2: User A sends a message to B through a proxy.

The proxy replaces (or rewrites) the source address of Msg with its own address and forwards
this message to B.

The technique described here can only be used for anonymous one-way communication, ie.
B cannot send an anonymous reply to A without knowing the identity of A (ie. responder
anonymity cannot be achieved). Mix-networks, described in section 2.2, aim to achieve this
goal.

In figure 2.2 there is only a single, forwarding node. The technique can be extended to
multiple, forwarding nodes in a number of ways, e.g. as described in section 2.6.1. The
basic anonymity properties of a system built on a single or on multiple forwarding nodes
are the same with the only difference being the number of connections to perform attacks on
or nodes to compromise.

2.1.1 Anonymity Properties

In general, the proxy technique is vulnerable to both wiretapper and edge attacks.

Sender Anonymity A achieves sender anonymity because B will see the proxy’s (and not
A’s) address as the source address and hence cannot determine who the actual sender of the
message was. This will be known as the proxy argument.

Recipient Anonymity B cannot achieve recipient anonymity because the proxy must know
the identity of B to be able to send the message to B.

Unlinkability A and B cannot achieve unlinkability for Msg with respect to the proxy be-
cause it can see both A’s and B’s address in Msg. If Msg is not payload encrypted, a passive
adversary can break unlinkability by performing an edge attack on the proxy.

If payload encryption is used, a passive adversary will still be able to break unlinkability
because the bit pattern of incoming messages to the proxy will match the bit pattern of the
outgoing message, thus making it possible to correlated incoming and outgoing traffic.
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In figure 2.3, a passive adversary can use traffic characteristica to correlate incoming and
outgoing traffic and will be able to gather statistical evidence to conclude—or at least strongly
suspect—that A was the sender and B the recipient of a given message Msg and thus break
their unlinkability for the message Msg. A goal is thus to hide traffic characteristica in such
a way that an adversary will not be able to correlate incoming and outgoing messages. Mix-
networks described in section 2.2 aim to achieve this goal.

Responder Anonymity A cannot achieve responder anonymity because the proxy must
know the identity of A to be able to send a reply from B to A.

Unobservability Unobservability can be achieved using white noise on the link from A
to the proxy and on the link from the proxy to B. However, a number of attacks on this
approach is possible. These will be described in section 2.2.3.

Figure 2.3: A passive adversary observing traffic on the forwarder’s incoming and outgoing link will
be able to suspect that A is communicating with B from message surface characteristics alone, because
a disproportionately large number of messages (2 out of 3 in this example) are forwarded from A to B.
Payload encryption doesn’t prevent this attack.

2.2 Mix-networks

Mix-networks were designed in 1981 by David Chaum for “Untraceable Electronic Mail, Re-
turn Addresses, and Digital Pseudonyms” [Cha81]. A mix-network consists of a number of
clients and one or more mix-servers each of which can be seen as a forwarding node with the
added capabilities of batching and mixing incoming messages before forwarding them. To
provide unlinkability against active adversaries that are able to compromise some (but not
all) of mix-servers on a path and to achieve bi-directional communication, layered (nested)
encryption is used.

A mix-system can either be arranged as a mix-cascade or as a mix-network. In mix-cascades
all messages sent by users always travel through the same path of mix-servers. In mix-
networks users choose the mix-server paths themselves. In the following we will only focus
on mix-networks. For a comparison of mix-cascades and mix-networks see [Ser04].
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An example mix-network is illustrated in Figure 2.4.

Figure 2.4: An example of a mix-network where A sends a message to B through mix-servers M1,
M6, M4, and M3.

For a node A to anonymously send a message Msg through a mix-network to a node B, A
must posses the public keys of the mix-servers through which it wants to send its message.
For this purpose, each mix-server in the network possesses an asymmetric key pair from
which all users can request the public key using some out-of-bands mechanism (ie. not
using the mix-network itself to retrieve the keys). After choosing one or more mix-servers to
form a path through the network, A prepares its message for routing thus:

1. Encrypt the message, Msg, with the public key of the last mix-server, Mn, on the path.

2. Encrypt the resulting message with the public key of mix-server Mn − 1, Mn − 2, etc.,
until finally encrypting the message with the public key of the first mix-server M1 on
the path.

In order for each mix-server on the path to know where to forward the decrypted message,
in each step above, A also appends the address of the next hop on the path (a mix-server or,
finally, the recipient, B) after each encryption.

As an example, in Figure 2.4, A might choose mix-servers M1, M6, M4, M3 to be on the path.
In that case a message to a recipient, B, would look thus:

PUKM1(PUKM6(PUKM4(PUKM3(PUKB(Msg), ADRB), ADRM3), ADRM4), ADRM6)

where PUKB is the public key of B, PUKMx and ADRMx is the public key and address of
mix-server x, respectively, and Msg is the message that A wants to send to B.

Because of the way that layers of encryption are added to a message, a message is also
sometimes known as an “onion”. The encryption of Msg with the public key of B is to
ensure that the last mix-server on the path will be able to read it.
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When a mix-server receives a message, it first decrypts it with its private key (“peels off”
a layer of encryption) and then performs some mixing algorithm. The study of mixing al-
gorithms is an area of continous research, see for example [Ser04]. We focus on Chaum’s
original proposals. The key elements in Chaum’s original mixing algorithm is to delay mes-
sages for a certain amount of time or until a certain number of messages have arrived and
then to reorder the messages, e.g., lexicographically before passing them on to the next mix
server on the path. Also, all outgoing messages from the mix-server are padded to the same
size in order to prevent volume attacks by passive adversaries, as described later. The last
mix-server on the path forwards the message to the intended recipient, in this case B, which
is able to decrypt the message using its private key.

Batching and reordering messages (mixing) at mix-severs prevents passive adversaries from
correlating the incoming and outgoing messages of a mix-server. If outgoing messages were
not batched and reordered before being forwarded, the fact that the mix-server removes one
layer from the onion (thus making it impossible to correlate the remaining onion with the
original onion) would not prevent the adversary from correlating ingoing and outgoing mes-
sages simply by sequence, i.e., the first incoming message is also the first outgoing message,
etc.

Before explaining the anonymity properties of mix-networks, the next section describes how
a node A anonymously can receive a reply to a previously sent message. The message type
used for this purpose are sometimes referred to as reply onions and it provides A with respon-
der anonymity.

2.2.1 Anonymous Replies

This section describes how mix-networks allow a recipient to respond anonymously to a
sender through the use of pseudonym keys.

For the sender A to send a message to which B can later reply without knowing the identity
of A, A first generates an asymmetric key pair, PUKpseudo, which does not reveal A’s true
identity but only provides a pseudonym to uniquely identify A. A then creates a reply
onion for the recipient, B, from which it wishes to receive the anonymous reply.

Inside the reply onion is the real address of A, encrypted with the public key of the last mix-
server on the path, i.e., the last mix-server between A and B. In the example below, only
one mix-server, M, is used, but A may easily create a multi-layered reply onion as described
previously. Also included in the reply onion is PUKpseudo (so B can encrypt its reply to A)
and the message itself:

PUKM(ADRA), PUKpseudo, ADRB → M → B

When B has received the message from A, it may reply by encrypting its reply message with
PUKpseudo and then choosing a path of one or more mix-servers such that the first mix is the
one that can decrypt the message that contains the address of A, in this case mix-server M.
This message is then sent back to A through M:
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PUKM(ADRA), PUKpseudo(MSG), ADRA → M → A

When receiving the reply from B, mix-server M decrypts A’s address with its own private
key and is then able to forward the message directly to A, whose identity is thus kept secret
from B.

2.2.2 Anonymity Properties

In general, the mix-network technique is vulnerable to both wiretapper and edge attacks and
also a number of attacks (described next) that can break unlinkability.

Sender Anonymity A achieves sender anonymity due to the proxy argument.

Recipient Anonymity B achieves recipient anonymity because its address is hidden in the
layered encryption.

Unlinkability A and B achieve unlinkability for a message because a passive adversary
that intercepts the message from A to B on a link in between two mix-servers on the path
because that message does not contain the address of A nor B in plain text.

Unlinkability can be achieved because the bit pattern of outgoing messages from a mix-
server cannot be correlated with the bit pattern of incoming messages to the same server,
because each mix-server peels off a layer of encryption and thus changes the bit pattern of
the outgoing message (see section 2.2.3). Therefore, a message intercepted on the outgoing
link of one mix-server cannot directly be correlated to any other message coming out of
another mix-server anywhere in the network.

An active adversary may compromise some or all of the mix-servers on a path and these
mix-servers may collaborate to break unlinkability. In general, as long as just one mix-server
is honest (not collaborating) on the path of a given message, unlinkability can be preserved
because incoming and outgoing traffic cannot be correlated across the entire path. However,
if collaborating mix-servers are consecutive on the path of a given message they will be able
to reveal part of the path for the message. If all mix-servers on the path collaborate they will
be able to break the unlinkability of a sender and recipient for the message.

In general, the size of individual messages between mix-servers cannot be used to correlate
messages belong to a particular session either, because all messages between mix-servers are
padded to the same size.

Responder Anonymity A achieves responder anonymity through the use of a pseudonym
key, assuming a passive or active adversary cannot observe traffic on the connection of or
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compromise the first mix-server on the reply path from B to A, respectively, because only
that mix-server will be able to see the address of A as the recipient.

Unobservability Unobservability in mix-networks can be achieved by the use of white
noise. Attacks on unobservability through the use of white noise is described in the next
section.

2.2.3 Attacks

The basic scenario is the one where the adversary knows that there is only one sender A and
one recipient B. Unlinkability is broken automatically if the adversary observes a message
going through the system: only A could have sent the message and only B could have re-
ceived it. The following attacks assume that there is at least both two possible senders and
two possible recipients.

If a passive adversary is able to intercept messages on the link from A to the first mix-server
on the path or on the link from the last mix-server to B, A’s sender anonymity or B’s recipient
anonymity will be broken, respectively. If the passive adversary is able to intercept messages
on both of these links, he may try to carry out the passive end-to-end attack described below
and thus break the unlinkability between A and B.

The attacks on unlinkability described below represent some common attacks and have pre-
viously been studied in, e.g., [RP03] and [Ser04]. Other attacks are possible (see [Ser04]) but
these will not be described here.

Volume Attack In a volume attack, an adversary observes traffic on the incoming and out-
going links at a mix-server in an attempt to correlate the number of ingoing messages
from each sender (another mix-server or a client) with the number of outgoing mes-
sages from the mix-server. This is illustrated in figure 2.5.

If A1 sends m messages to this mix-server, and A2 sends n messages to this mix-server,
then even though the mix-server reorders the messages before forwarding them, the
passive adversary will know that m outgoing messages from the mix-server are for-
warded to M3 (and ultimately B1) and that n messages are forwarded to M7 (and ulti-
mately B2), even if the mix-server padded all m + n messages to the same size before
forwarding them. To protect against this attack, white noise may be employed between
mix-servers. This way, a passive adversary cannot determine the number of incoming
and outgoing messages from the mix-server anymore and is thus unable to correlate
messages by volume.

End-to-end Attack This attack is a special case of the volume attack described above. If
the passive adversary can observe traffic on the links between A and the first mix-
server and on the link between the last mix-server and B, it may be able to observe a
correlation between the number of messages sent by A and the number of messages
received by B and thus deduce with some probability that A and B are communicating.
This is illustrated in figure 2.6. Protection against this attack is to insert white noise on
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Figure 2.5: Traffic analysis at a single mix (M9). To a passive attacker observing traffic on M9’s links,
the fact that three messages from M5 are forwarded to M3 and two messages from M4 are forwarded
to M7 is a good indication that A1 is communicating with with B1 and A2 communicating with B2.

the link between A and the first mix-server on the path. In this setting a volume attack
is not possible since the adversary cannot tell how many messages A sends (if any)
and correlate that number with the number of messages received by B.

Figure 2.6: A passive attacker observing traffic on A1’s and A2’s outgoing links and B1’s and B2’s
incoming links may be able to correlate the number of incoming and outgoing messages and from that
deduce with a certain probability that A1 is communicating with B1 and A2 with B2.

There are also a number of attacks that an active adversary can carry out. The following
describes two such attacks for which there is currently no protection:

Blocking Attack If an active adversary has compromised the first mix-server on the path,
white noise between A and this first mix-server is useless, because the compromised
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mix-server will be able to tell white noise from real messages, and therefore an end-to-
end attack is again possible if the adversary is also able to intercept incoming traffic to
B or compromise the last mix-server on the path to B. Protection against this attack is
possible by using end-to-end white noise instead of link-to-link white noise. That is, A
must send dummy messages encrypted with B’s public key through all the mixes on
the path to B instead of just to the first mix-server such that only B is able to distinguish
between dummy messages and real messages. None of the mix-servers will be able to
tell “real” messages from the white noise and A and B’s unlinkability is preserved.
However, even this bandwidth-intensive protection does not protect against active at-
tackers controlling mixes at each end of the path. The first mix-server may block traffic
from A a number of times and if the last mix-server on the path observes “holes” in
the traffic to B corresponding to the blockings performed by the first mix-server, the
adversary may conclude with some probability that A communicates with B.

The n− 1 attack If a mix-server batches exactly n incoming messages before forwarding
them, an adversary may send n − 1 messages to the mix-server and then wait for an-
other message to be sent to the mix-server. Because the adversary is able to correlate
n− 1 of the outgoing messages from the mix-server with the n− 1 messages sent to the
mix-server (because it sent them itself), the adversary will be able to determine which
mix-server the last message is forwarded to, and thus reveal part of the route for that
message.

2.3 DC-networks

DC-networks (“Dining Cryptographer-nets”, also known as “Superposed Sending”) is a
technique invented by David Chaum in 1988 [Cha88] to achieve “Unconditional sender
and recipient untraceability” among a number of communicating entities. Using the defini-
tions from section 1.1, “untraceability” as used in [Cha88] is synonymous with “anonymity”.
Chaum explains his technique through the following scenario [Cha88, p. 1]:

Three cryptographers are sitting down to dinner at their favorite three-star
restaurant. Their waiter informs them that arrangements have been made with
the maitre d’hotel for the bill to be paid anonymously. One of the cryptogra-
phers might be paying for the dinner, or it might have been NSA (U.S. National
Security Agency). The three cryptographers respect each other’s right to make
an anonymous payment, but they wonder if NSA is paying. They resolve their
uncertainty fairly by carrying out the following protocol:

Each cryptographer flips an unbiased coin behind his menu, between him and
the cryptographer on his right, so that only the two of them can see the outcome.
Each cryptographer then states aloud whether the two coins he can see–the one
he flipped and the one his left-hand neighbor flipped–fell on the same side or on
different sides. If one of the cryptographers is the payer, he states the opposite
of what he sees. An odd number of differences uttered at the table indicates
that a cryptographer is paying; an even number indicates that NSA is paying
(assuming that the dinner was paid for only once). Yet if a cryptographer is
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paying, neither of the other two learns anything from the utterances about which
cryptographer it is.

The scenario described above is illustrated in Figure 2.7. The paying cryptographer achieves
sender anonymity because none of the two non-paying cryptographers knows which of the
two other cryptographers actually paid, ie. who lied about the outcome of the coinflips. The
sender anonymity is unconditional because it is impossible for any one of the cryptographers
to know who lied.

Figure 2.7: Three dining cryptographers around a table. Each cryptographer can only see the coin to
his immediate left and right.

It can be seen from this example that if a cryptographer knew the outcome of both coin flips
for another cryptographer, he would be able to tell if that cryptographer was lying, so no
cryptographer must know the outcome of both coin flips for any other cryptographer, or the
anonymity of that cryptographer will be broken.

2.3.1 Generalized DC-networks

A generalisation of DC-networks depicts participants as vertices in a graph and shared coins
as edges. To make a functional DC-network, the graph must contain at least three vertices
if any of them are to stay anonymous to the other vertices in the graph. With two vertices,
only non-participant vertices are unable to distinguish between the two potential senders in
the graph. All vertices must be connected such that each vertex is connected to at least two
other vertices. In the case of three vertices, this could form a ring as illustrated in figure 2.8.
In a graph with k vertices, each vertex may be connected with up to k − 1 other vertices, to
form a fully connected graph, as illustrated in figure 2.9.

In Chaum’s dinner scenario, each cryptographer “reads aloud” the outcome of the coin flips
he can see. In the graph terminology adopted here, this corresponds to each vertex broad-
casting the outcome of the coin flips to every other vertex in the graph. If the number of
vertices is k, each vertex sends the coin flip outcome to k − 1 other vertices, resulting in
k× (k− 1) = k2 − k messages, regardless of how the vertices are connected.
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Figure 2.8: Three vertices forming a ring-
shaped DC-network. Each vertex shares a se-
cret bit with its two neighbours.

Figure 2.9: Four vertices forming a fully con-
nected DC-network. Each vertex shares a se-
cret bit with every other vertex in the net-
work.

The scenario above described sender anonymity but recipient anonymity is also achievable
in a DC-network if every vertex in the graph has anonymously (via e.g. the DC-network
itself) published a pseudonym public key, i.e., a public key that does not reveal the identity
of the node in possession of the corresponding private key. A participant node may now
encrypt its message using one of these public keys and send the encrypted message using the
DC-network protocol. The identity of the sending node (its sender anonymity) is protected
as described previously, and since the only node capable of decrypting the message is the
intended recipient, this node is anonymous to all other participant nodes because no other
vertex can know which vertex is able to decrypt the message and hence achieves recipient
anonymity.

This method of achieving recipient anonymity can be used by all techniques that send mes-
sages encrypted with pseudonym keys to multiple recipients, e.g., also by broadcasting as
described in section 2.4.

An alternative to using public-key cryptography is to use a one-time pad. The message is
then encrypted with this one-time pad instead of the recipient’s public key, and only the
intended recipient is able to decrypt the message. The problem with this solution is that the
one-time pad must be as long as the message it encrypts, and it must be communicated to
the recipient securely and anonymously. However, if this is possible with the one-time pad,
the sender might as well send the message itself through the same channels.

2.3.2 Practical DC-networks

The DC-network protocol can be adapted to computer networks by representing all mes-
sages as 0’s and 1’s. The binary exclusive-or operation (XOR, denoted by ⊕) can be used for
implementing the cryptographers’ utterances from Chaum’s description, “same” or “differ-
ent” as 0 or 1, respectively, because it has the property that an even number of “same” or
“different” as input will cancel each other out, while an odd number of “same” or “differ-
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ent” as input will rsult in “same” or “different” as output, respectively. Vertices are replaced
by computers (or nodes), and each edge in the graph, representing a shared coin, is replaced
by a link between two nodes in a network through which a single bit (for “heads” or “tails”)
may be exchanged.

In a network with a ring topology where each node is connected to two other nodes, the
outcome of computing e1 ⊕ e2 for a node (denoted p) is either 0 (in the case of p = 1⊕ 1 =
0 ⊕ 0 = 0) or 1 (in the case of p = 1 ⊕ 0 = 0 ⊕ 1 = 1). In the case of a fully connected
network, each node simply extends this calculation to include the bits exchanged on all its
links, p = e0 ⊕ e1 . . .⊕ ek−1, instead.

The bit communicated on each link is thus XOR’ed exactly twice in the case of a ring topology
and k− 1 times in the case of a fully connected network, once by each node connected by a
link. Therefore, the final result for each node will be 0 if any even number of nodes invert
their result, and 1 if any odd number do so.

The node wishing to communicate an anonymous message (in this case a single bit) broad-
casts p ⊕ 1 in the case where its message is 1 and p ⊕ 0 (or, equivalently, just p) in the case
where its message is 0. In both cases, all the other nodes not wishing to communicate an
anonymous message send p⊕ 0 or equivalently, just p.

All nodes may obtain the anonymous message by calculating p0 ⊕ p1 ⊕ · · · ⊕ pk−1, where p0
is the message the node broadcasted to all other node, and p1 . . . pk−1 are the messages the
node received from all other nodes.

For messages longer than a single bit, new secret bits are exchanged between nodes for each
bit to be communicated, and the protocol repeated.

2.3.3 Efficient DC-networks

To build more efficient DC-networks, the frequent exchanges of secret bits described above
may be minimized by having nodes perform a secure, one-time exchange of a seed to a
pseudo-random number generator (PRNG).

When two nodes have exchanged this seed, they may use it to initialise each their own
PRNG and then generate an infinite amount of identical, pseudo-random streams of bits
fast without any further communication. This solution means only a few bytes need to be
exchanged once to set up the DC-network in contrast to the naïve method where nodes would
have to exchange up to k− 1 bits for each bit to be communicated.

2.3.4 DC-networks With External Recipients

DC-networks as described so far require that each time a node wishes to send one bit of
information, it broadcasts this bit to all other nodes in the DC-network. However, if recipient
anonymity is not needed, the recipient of a message may be external to the DC-network, as
illustrated by figure 2.10.
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Figure 2.10: A DC-network where the recipient is not part of the DC-network and thus all nodes
know the identity of the recipient.

Instead of broadcasting to every other node in the DC-network, each node now sends its out-
put to an external node. Upon receiving data from all nodes in the DC-network, the external
node may construct the message sent by the DC-network by calculating p1 ⊕ p2 . . . pk where
p is the outcome sent by each node in the DC-network, and k is the number of nodes in the
DC-network. The external node is now in possession of the message sent by the DC-network
but is unable to know which node in the DC-network actually sent it, ie. sender anonymity
is achieved. Since each node in the DC-network now needs only to send to a single node,
the external node, this lowers the total number of messages send from k2 − k to k, one from
each node in the DC-network.

2.3.5 DC-network Example

In the following example, one “round” in the DC-network corresponds to broadcast of one
bit, so for example, eight rounds of broadcasting are required to send one byte.

Assume three nodes, A, B, and C are connected in a ring topology (identical to example in
figure 2.8). The actual eight bits shared between A, B, and C for each round in this example
are shown in Table 2.1.

#1 #2 #3 #4 #5 #6 #7 #8
A↔B 1 0 0 1 1 0 0 1
B↔C 0 1 0 1 0 0 1 1
C↔A 1 0 0 1 1 1 0 0

Table 2.1: Bits shared between nodes for the eight rounds. A↔B signifies bits shared between A and
B, and #1 means round 1, #2 means round 2, etc.

Now B wants to broadcast the eight bits (11001001)2 anonymously. In order to get the result
for each round, the three nodes each calculate s1 ⊕ s2 where s1 and s2 are the node’s shared
bits. A node wishing to send a 0 and nodes not wishing to send at all simply broadcast
s1 ⊕ s2, while a node wishing to send a 1 broadcassts s1 ⊕ s2 ⊕ 1. The result for the first
round of this example is:
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A : 1 ⊕ 1 = 0
B : 0 ⊕ 1 ⊕ 1 = 0
C : 0 ⊕ 1 = 1

In the above, node B wants to send a 1, so it inverts the XOR of its shared bits by XOR’ing it
with 1. All nodes may calculate the final result for any round by XOR’ing all results for that
round, in this case 0⊕ 0⊕ 1 = 1. Thus, someone sent a 1 in this round, but the identity of
the sender is unknown to all nodes but the sender itself. The results for all eight rounds can
be seen in Table 2.2.

Bit to send: 1 1 0 0 1 0 1 0
A 0 0 0 0 0 1 0 1
B 0 0 0 0 0 1 0 1
C 1 1 0 0 1 0 1 0

Result: 1 1 0 0 1 0 1 0

Table 2.2: An example of eight rounds of the DC-net protocol. Results are calculated by XOR’ing the
numbers output by A, B, and C in a column. Node B is the sender.

2.3.6 Disruption in DC-networks

One of the biggest problems with DC-networks is the problem of disruption: one or more
nodes in a DC-network can disrupt the network by accidentally or maliciously lying about
their “coin flips” even if they were not supposed to according to the protocol thereby de-
stroying the property that all bits are XOR’ed in the result exactly k times. To make matters
worse, they can do so anonymously due to the nature of the DC-network.

Chaum proposes a disruption protocol, i.e., a protocol to prevent disruption (and ban dis-
rupters) in [Cha88], but according to Waidner and Pfitzmann [WP90], the protocol is based
on an “unrealistic assumption” of a reliable broadcast medium, i.e., a medium that guar-
antees that each message sent by one participant is received unaltered by all other partici-
pants in the network. Chaum’s protocol is also susceptible to a number of attacks described
in [WP90]. Waidner and Pfitzmann suggest a number of enhanced protocols resulting in a
protocol based on the idea of “digital signatures whose forgery by an unexpectedly powerful
attacker is provable”.

Disruption protocols, however, are out of scope for this work.

2.3.7 Anonymity Properties

DC-networks achieve unconditional sender and recipient anonymity because it is impossible
for any node that knows at most k − 1 (where k is the number of participants) shared bits
(or seeds) to tell which node is lying (sending) or receiving a message, respectively. Practical
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DC-networks that achieve unconditional anonymity can be built by exchanging bits or seeds
using one-time pads.

In practice, however, one-time pads are not used. Instead, a bit can be shared by the use
of public key cryptography which removes the “unconditional” part because an adversary
could break the encryption and hence learn the value of the bit, reducing the anonymity to
computationally secure. Also, instead of sharing single bits more efficient DC-networks can be
built by exchanging seeds for pseudo-random number generators (PRNGs) using a secure
key-exchange algorithm. One might argue that the latter is more secure because a passive
adversary only has one attempt to intercept the exchanged seeds but many attempts if just
one bit is exchanged (and many bits must be sent. In that case, the node’s anonymity will
be broken for only one bit, of course.). If all k− 1 seeds for a node are intercepted that node
cannot achieve sender anonymity in that particular DC-network anymore. Once a node’s
seeds are exchanged without interception, however, and assuming that PRNGs cannot be
broken (ie. their outcomes predicted), the node’s sender anonymity cannot be broken 1.

Sender Anonymity In general, DC-networks provide sender anonymity against an adver-
sary that knows at most k− 2 of a node’s shared bits. If the adversary knows all k− 1 bits a
node shares with other nodes, it will be able to tell whether the given node is sending (lying).
Assuming that it is increasingly difficult to gain knowledge of an increasing number of bits,
this implies using fully-connected DC-networks to maximize the number of shared bits that
an adversary must be able to learn to expose the identity of the sender.

Recipient Anonymity Recipient anonymity can be achieved by encrypting a message with a
pseudonym key that is only known to the intended recipient and hence everyone will receive
the message but only the intended recipient will be able to read the contents of the message.

Unlinkability If being able to read the message is defined as “receiving the message” then
using pseudonym keys also provides unlinkability because no one knows who holds the key
and hence no one will be able to determine which node could read the message which is a
part of the requirements to break unlinkability.

Responder Anonymity Responder anonymity in DC-networks with either internal or ex-
ternal recipients can be achieved, in both cases by broadcasting the reply to all participants
in the DC-network.

Unobservability is not possible in DC-networks because even though it cannot be known
who is the sender (and perhaps recipient) of a message, all the nodes in the network still
know when a message is being sent.

1This is not the same as unconditional anonymity, however, because an adversary could have intercepted the
exchanged bits or seeds and thus be able to break sender anonymity
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2.4 Broadcasting

In broadcast protocols, all participants send messages to all other participants at a con-
stant rate through a global broadcast channel. Obviously, this is an extremely expensive
technique, even compared to “original” DC-networks where messages are only broadcasted
when a node has an actual message to send.

When participants have an actual message to communicate, they send signal messages to
this global broadcast channel, and at all other times they send noise messages. Figure 2.11
shows how four nodes may be connected in a broadcast network.

Figure 2.11: Four nodes set up as a broadcast system with a common global communication channel.
All nodes send and receive messages to and from the broadcast channel at a fixed rate, and only the
intended recipient is able to distinguish white noise from real messages.

2.4.1 Anonymity Properties

Broadcast protocols provide users with unobservability and hence also sender- and recipient
anonymity, and unlinkability. Unobservability is achieved by a broadcast protocol against
both passive and active adversaries because all nodes send messages to the global communi-
cation channel at a constant rate, and all messages are encrypted such that the adversary and
all non-recipients cannot distinguish real messages from noise (as described in section 2.3.1).

Thus, if an adversary intercepts messages on the outgoing link of one of the participants
in the network, it is impossible to tell whether the messages are noise or real messages and
therefore impossible to tell if the participant being wiretapped is communicating with some-
one. The same argument applies to the case where the adversary intercepts incoming traffic
to a participant.

2.5 The Peer-to-Peer Factor

The techniques presented in the previous sections can be used to build anonymizing systems
in both a classic centralized, client/server approach or in a peer-to-peer context. This section
gives an overview of advantages and disadvantages of the two, both in the context of generic
applications and anonymizing systems.
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The motivation for peer-to-peer networks in general stems from the problems and/or limi-
tations with the classic client-server approach, e.g.:

• Lack of scalability to many users due to bottlenecks.

• Single-point-of-failure 2.

• A small, static set of servers makes the system more vulnerable to e.g. denial-of-service
(DoS) attacks because the adversary always knows the identity of the servers to attack.

• Geographically closely placed servers makes the system vulnerable to e.g. physical
attacks or accidents.

Peer-to-peer networks attempt to overcome these problems and/or limitations. In “real”
peer-to-peer networks there is no central server and thus no single-point-of-failure. State
information is distributed throughout the network and thus no single node (or small set of
nodes) has an overview of the entire network. If the network is structured as e.g. Chord [SMLN+03]
or Pastry [RD01a] it will scale to millions of users with guarantees about the number of rout-
ing hops (see section 3.1.3). The set of system nodes is as large as the set of nodes in the
network since every node joining becomes a system node. Also, because nodes may join
and leave at arbitrary times, specific system nodes become very difficult to attack. Finally,
because nodes from potentially all over the world are part of the network, nothing short of
a global catastrophy will make the entire network unusable.

However, a number of problems with peer-to-peer networks in general exist, e.g.:

• The dynamics of the network can make it hard to build systems that e.g. must keep
data available at all times or provide long-lived communication channels.

• If any node can join the network, node heterogenity in terms of CPU and bandwidth
capacity can have performance implications.

• It is easier for an adversary to insert malicious system nodes than in a centralized
system where authentication of a relatively small and static set of nodes can easily be
done.

• Nodes accidentally or maliciously not following protocol, by e.g. not forwarding mes-
sages or not saving data.

Anonymizing systems can as mentioned be built using a client-server or a peer-to-peer ap-
proach. Specific problems for client-server anonymizing systems include (but are not limited
to):

• Centralized trust. The user must trust the individuals or organization running the
anonymizing system to keep the user’s identity secret.

2Or alternatively, few points of failure.
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• Users are not part of the system which makes edge attacks possible.

• Administratively closely placed servers (e.g. within the same organization) makes the
system vulnerable to e.g. legal attacks.

Peer-to-peer anonymizing systems attempt to overcome these problems and/or limitations.
Trust is distributed and no fixed real subset of nodes knows the identities of all users. Be-
cause of the dispersal and dynamism of nodes it is extremely difficult for an adversary to
be global and to observe traffic on specific connections or to compromise specific nodes that
make up the anonymous channel for a given communication. Also, because users are part
of the anonymizing system edge-attacks are not possible. Because nodes are usually both
geographically and adminstratively dispersed legal attacks become very hard.

Problems with peer-to-peer anonymizing systems include (but are not limited to):

• How the number of adversaries joining the system can be kept under a certain limit.

• Authentication of nodes.

•

• Adversaries preventing nodes from learning about the rest of the network such that
affected nodes always will send messages through the nodes controlled by the adver-
sary.

• Motivation for users to provide anonymity for other users.

We feel that the benefits of peer-to-peer networks outweigh the downsides, and thus the fol-
lowing survey will only describe systems built on the peer-to-peer approach. Also, systems
built on the classic centralized approach have been studied extensively previously.

2.6 Survey of Peer-to-peer Anonymizing Systems

Most anonymizing systems so far have been built on a centralized client-server approach,
these include (but are not limited to): Anonymizer [ano], The Eternity Service [And96],
Onion Routing [GRS99] (Tor [DMS04]), Mixminion [DDM03], Free Haven [Din], Publius [MWC00],
Dagster [SW] and Tangler [WM01]. They differ widely in their purpose (ranging from
generic anonymous TCP/IP communication (e.g. Onion Routing), to anonymous file storage
system with algorithms for content migration and reputation (Free Haven)) but they all aim
to offer some form of anonymity for the sender (or initiator/publisher/storer, respectively).

Recently, systems based on a peer-to-peer network have been designed, analyzed and imple-
mented. The following briefly describes a few selected, concrete peer-to-peer anonymizing
systems focusing on the unique contribution of each system (and not on the specific sys-
tems’s anonymity properties) to enlighten some of the challenges that exist within the area
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of building anonymizing systems in a peer-to-peer context. In general, each system has the
same anonymity properties as the technique on which it is built. However, due to the peer-
to-peer factor both passive and active attacks become harder to perform than in traditional
systems built on the same techniques and thus peer-to-peer anonymizing systems are intu-
itively more secure.

A comparison of the anonymity properties of specific systems is out of scope for this work.
GAP [BG03] takes the first steps towards such a comparison (for some of the systems 3), but
as the authors state “The systems differ widely in their respective costs and benefits and it is
thus difficult if not impossible to make a fair comparison”.

The following presents a survey of some existing anonymizing systems built on peer-to-
peer technology that achieve different kinds of anonymity (at least sender anonymity) for
their users while overcoming the limitations and/or problems of centralized anonymizing
systems.

2.6.1 Crowds

Crowds is a peer-to-peer system described by Reiter and Rubin [RR97] in 1998. The sys-
tem extends the proxy technique by adding multiple forwarding nodes as described in this
section. The system works on the application level and provides a means for users to issue
anonymous web requests, ie. achieve sender anonymity.

Because users are part of the anonymizing system itself, a node receiving a message from
another node cannot tell whether that node was the original sender or merely forwarding the
message (unless a wiretapper attack can be performed). This is similar to the proxy argument
but here nodes cannot tell the difference between the system and the senders.

Users are grouped into a (preferably) geographically dispersed collection, called a crowd,
which retrieves the result of a web request issued by the user. The web servers are not part
of the crowd and hence recipient anonymity is not possible.

When users join the crowd, they are informed of the identity of the other crowd members,
and these nodes are also informed that the new user has joined the crowd.

Once a user has joined the crowd, he may issue an anonymous request to a web server
through the crowd. The user simply forwards his request to a randomly chosen member of
the crowd instead of directly to the web server. This member chooses uniformly at random
whether to submit the request to the web server specified in the request, or to forward the
request to another randomly chosen member of the crowd. The probability of this choice,
p f , is biased in favour of forwarding, i.e., p f > 1/2. In either case, the member records
the id the of the member from which it received the request, the id of the node to which it
forwarded the request or the id of the server to which it submitted the request, and a session
id identifying the connection. It then saves this information, typically for 30 minutes, such
that when a reply to the request is received, the node knows which node to forward the reply

3Although the authors don’t differentiate between systems and the techniques they are built on.
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to.

The process is illustrated in Figure 2.12.

Figure 2.12: A client sends a request (solid lines) through three random crowd members, the last of
which chooses to forward the request to the web server. The web server replies to the random crowd
member that sent the request (dashed lines), which in turn forwards the reply from the web server
back through the chain of random crowd members to the original client.

The set of crowd members through which a message passes constitute a path for that mes-
sage, and any crowd member may be part of a number of paths simultaneously. Paths are
static for a pre-defined period of time such that requests to different web servers from the
same crowd member will be routed along the same path until paths are reset and new mem-
bers join the network. This is known as a path reformation and can be used to perform the
predecessor attack described next.

Ultimately, after the request has passed through a number of crowd members, the web server
receives the request, processes it, and returns the answer to the crowd member from which
it received it. Since this member has a record of having forwarded one or more messages
with the associated session id, it simply forwards the reply from the web server to the mem-
ber from which it originally received the request. This process continues until the original
initiator of the request receives the answer from the first randomly chosen node to which it
chose to forward the request.

Predecessor Attack

Crowds is susceptible to a statistical attack called the predecessor attack, first described in [RR97]
and later extended in [WALS01]. A number of attackers may simply join the crowd and wait
for paths to be reformed. After each reformation, each attacker logs its immediate prede-
cessor when a path is formed through the attacker. The attack is based on the intuition that
given a large number of path reformations, the path initiator I is more likely than any other
node to appear as the immediate predecessor of one of the attackers. The more path refor-
mations the attackers are able to observe, the more clear it will be that I is the path initiator.
Furthermore, the higher the ratio of attackers to the total number of nodes in the crowd, the
less path reformations need be observed to identify I with increasing probability and thus
break I’s sender anonymity. The following example illustrates this.

Assume a network with 15 crowd members with node ids 1–15. Nodes 11–15 are malicious
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Node Id 0 1 2 3 4 5 6 7 8 9
Times logged 1 2 3 15 5 6 4 7 4 3

Frequency in % 2 4 6 30 10 12 8 14 8 6

Table 2.3: The number of times each node id has been observed as predecessor to one of the attackers
and the corresponding frequency in percent.

attackers trying to identify one or more path initiators among the remaining 10 crowd mem-
bers.

The malicious nodes each log their immediate predecessor for a given session id over, e.g.,
10 path reformations in a list and collectively end up with the following lists:

11. {1,3,3,2,7,8,3,5,7,4}

12. {6,3,5,4,4,8,9,3,4,3}

13. {7,4,5,3,2,3,6,3,9,3}

14. {7,6,8,3,5,7,5,3,1,3}

15. {5,3,7,7,9,0,6,8,3,2}

Each list consists of 10 node ids of predecessors to nodes 11–15, with 50 ids in total. Each
individual id is observed a number of times as summarised by Table 2.3:

This table shows that the node with id 3 occurs far more often than any other observed node
id. Because the path initiator is more likely to appear in more paths than a random crowd
member, node 3 in the example above is more likely to be the path initiator than any of the
other observed nodes.

2.6.2 Hordes

Hordes [LS02] is a system for sender and responder anonymity on the transport layer using
Crowds for sender anonymity and multicast for responder anonymity4.

Because Hordes is built on Crowds which in turn is based on the proxy technique it is sus-
ceptible to the same attacks as Crowds and the proxy technique, e.g. the wiretapper and
predecessor attack.

In Hordes, when a user joins the network it joins a group, a horde, that has a multicast address
specified by a server. From this horde an initiator can anonymously communicate with a
(non-anonymous) responder by sending a message through a Crowds path within the horde
specifying the multicast address as the source. The responder replies to the multicast address
and the initiator receives the reply remaining anonymous within the horde.

4The authors claim that “the forwarding mechanisms from mix-servers could easily be adapted for use on
the Hordes forward path”.
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For Hordes to be efficient it is required that the network infrastructure (routers) supports
multicast communication. It is worth noting that in current multicast protocols no single
entity can determine the membership of a multicast group; this requires the coordination of
all routers that make up a given group.

Because of the asymmetry of the initiator sending a message via unicast and the responder
replying via multicast, protocols for reliability and congestion control are needed.

2.6.3 Freenet

Freenet [CMH+02] is an anonymous, peer-to-peer file storage system built on a Crowds-like
technique. Nodes that publish files in Freenet, publishers, achieve sender anonymity and
nodes that store files, storers, achieve recipient anonymity during publication of a file unless
an adversary is able to perform a wiretapper attack. During retrieval, nodes that retrieve
files, clients, and storers achieve recipient and sender anonymity, respectively, because of
the proxy argument. The anonymity properties of Freenet during publication are similar to
the anonymity properties of Accordion (presented in the next chapter) during publication.
Accordion, however, achieves stronger anonymity properties than Freenet during retrieval
due to the use of DC-networks.

The main contributions of Freenet are its use of different types of file identifiers, keys, and
its caching/replication strategy.

Keys

The most basic key in Freenet is the keyword-signed key (KSK) which is basically just a hash
of the filename.

KSK : H( f ilename)

However, two other key types which are used for avoiding “key squatting” and for update-
able files, respectively, are also used:

SSK To prevent accidental or malicious “key squatting”, ie. choosing popular filenames
as keys for junk files thereby making it harder to locate and retrieve the “real” file, a signed
subspace key (SSK) is used. A user I randomly generates an asymmetric key pair (PRKI ,PUKI)
from which the public key, PUKI , serves as I’s namespace and the private key, PRKI , is used
to sign the file. The SSK for a file is then defined as:

SSK : H(H(filename)⊕ H(PUKI))

To allow for retrieval of the file, PUKI is published along with the filename. In order to insert
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a file in I’s namespace PRKI is needed so no other users can prevent I from inserting a file
with a particular filename.

CHK To update files a content hash key (CHK) is used. First, to insert an updateable file the
CHK is calculated:

CHK : H( f ile)

Then (CHK,file) is inserted. Also, an SSK is calculated and (SSK, SPRK(CHK)) is inserted
to create a “pointer” to the file, where S denotes is a signing function. The file can then be
retrieved through the SSK.

To update a file, a user first inserts the modified file under its new CHK. Then, to update
the pointer, the original SSK is inserted along with the new CHK. When the insert reaches a
node that possesses the SSK, a key collision will occur: the node on which the collision occurs
checks the signature on the new CHK and verifies that it is both valid and more recent and
overwrites the old CHK value with the new one. The old version of the file will now only be
available through the old CHK value.

Caching

Requests for files in Freenet are forwarded through a number of nodes until a node that
can fulfill the request is hit or a hops-to-live value in the request reaches 0 (in which case a
“Request failed” message is sent back through the path). In the case of a succesful request,
the file is passed back to all nodes on the path and each node associates the file with the
corresponding key. A subsequent requests for the same file by the same client will thus be
handled locally. A request for a file with a similar key will be forwarded to the previously
succesful data source. This means that nodes over time will improve both their local routing
tables and data stores by storing more and more pointers to nodes that store files with similar
ids and storing the files with similar ids themselves.

The caching strategy both improves efficiency because files potentially get nearer to clients
that request them but also serves as a replication mechanism that ensures availability in the
case of node failures.

2.6.4 MorphMix

MorphMix is an anonymizing system built on the mix-network technique that provides
anonymity on the transport layer enabling applications to be built on top of it. The main con-
tributions of the MorphMix system are the tunnel setup process and its collusion-detection
mechanism.
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Tunnel setup As opposed to traditional mix-networks the initiator selects only the first hop
in tunnel. Subsequent nodes are added by letting the last recently added node choose
the next hop. The choice of the next hop is done by using a witness: the role of the
witness is to ensure that the last recently added node doesn’t either simulate or single-
handedly choose the remaining nodes of the tunnel. The witness is chosen randomly
from the set of nodes that the initiator knows and the basic assumption is that it is
unlikely that an adversary is colluding with this randomly chosen witness.

When the tunnel is set up, the initiator encrypts a message as described in section 2.2
but using symmetric keys shared with each hop in the tunnel as opposed to the pub-
lic keys of the hops. These keys are deleted when a tunnel is torn down. In classic
mix-networks an adversary could perform an attack where it recorded traffic and later
gained access to the mix-servers to obtain their (permanent) private keys thereby en-
abling the adversary to decrypt the recorded data. This attack is not possible in Mor-
phMix because once the tunnel is torn down and the keys deleted no adversary will be
able to decrypt old traffic on that were encrypted with these keys. This is also known
as perfect forward secrecy.

Tunnels are changed frequently. This is done both to strengthen the collusion-detection
mechanism (described next) and to minimize the amount of traffic that an adversary
controling a tunnel will be able to see.

Collusion-detection mechanism To avoid tunnels composed of malicious nodes that can
collude to reveal the identity of the initiator, all MorphMix nodes keep track of the
tunnels they have setup previously. The basic assumption is that if a malicious node is
hit when setting up a tunnel this node will suggest other malicious nodes to complete
the tunnel.

For each hop added to a tunnel the following is registered: the witness used to add
the hop and a list of candidates that were presented to the initiator as the next possible
node in the tunnel. Based on the variation of these nodes a node can calculate a corre-
lation value that can later be used to determine (or rather, make a qualified guess as to)
whether a given tunnel contains malicious nodes.

It should be noted that the mechanism described above could be defeated if the ad-
versary more cleverly not only suggests other malicious nodes as candidates but also
benign nodes. This could lower the correlation value to a non-suspicious level. In
MorphMix [RP02] a more sophisticated method is suggested. This is, however, out of
scope for this project.

2.6.5 TAP

TAP (Tunneling approach for Anonymity in P2P systems) is an anonymizing system built
on the mix-network technique that aims to solve the functionality problem (in contrast to an
anonymity problem) of a node in a tunnel that disconnects from the network and thereby
breaks the tunnel. It does this by basing hops in a tunnel on ids in a structured network (e.g.
a distributed hash table (DHT)) instead of basing them on the IP-addresses of specific nodes.
TAP makes sure that the keys used for the nested mix-encryption are always replicated on
the numerical neighbours of the node responsible for a given hopId (numerically closest to
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the hopId), the replica set. To do this replication TAP relies on the DHT to notify it of nodes
joining and leaving. Assuming that the replica set is always up-to-date a hop in a tunnel in
TAP will continue to work unless all nodes in the replica set are unavailable.

Access to (ie. use or deletion of) a tunnel hop is protected by a password known only to the
initiator of the tunnel and the replica set. To protect against collisions in hopIds these can
be computed as a hash of e.g. the nodeId or the node’s PUK or PRK and some additional
information. To create the hops for the first tunnel a node must use a bootstrap tunnel. This
could be done by using an existing system such as Onion Routing [GRS99] or an existing
TAP-tunnel.

2.6.6 GAP

GAP (GNU Anonymous Protocol) is an anonymizing system built on the mix-network tech-
nique used by GNUnet to provide an anonymous file-sharing system. Sender and recipient
anonymity in GAP work by not only mixing queries and replies (coming from the GNUnet
application) but forwarding these to a number of other nodes based on e.g. local CPU and
network load. Because of this, the layered encryption and because nodes can forward mes-
sages to multiple nodes an adversary will not be able to correlate the incoming and outgoing
messages.

For example, if an adversary sees that a node A receives one message from a node B and
one message from a node C and that A sends out three messages, the adversary cannot
know whether the three outgoing messages are B’s message being forwarded to three other
nodes, B’s message being forwarded once and C’s message twice, A’s message twice and C’s
message once etc.

A node forwarding queries for other nodes records the source id of the query and associates
it with the id of the query. This way, when a node receives a reply it checks whether it needs
to forward the reply to another node. A node that receives a reply might also choose to copy
the content to its local data store thereby providing content migration similar to the caching
used by Freenet.

2.6.7 Herbivore

Herbivore [GRPS] is an anonymizing system built on DC-networks with external recipients.
It provides users with sender and responder anonymity against passive adversaries.

Users are divided into cliques, each forming a DC-network. Cliques are of size at least k,
where k is a predetermined constant, and a global topology algorithm ensures this invariant
is maintained throughout the lifetime of the system. If a clique grows too large to communi-
cate efficiently (more than 3k members), new smaller cliques are formed from the members
of this clique. Similarly, if the number of members in a clique falls below k, the remaining
members are moved to other cliques. Two protocols control the behaviour of Herbivore.
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The entry protocol in Herbivore serves three purposes:

1. It prevents nodes from choosing which clique to join. If nodes could choose which
clique to join, an adversary could place itself in a clique with only one other node and
hence break the anonymity of that node.

2. It maintains the invariant that cliques are of approximately equal size by randomizing
which cliques to put newly joined nodes in.

3. It limits the rate at which new nodes may join the network. This deters DoS-attacks by
malicious nodes joining the network in rapid succession.

The round protocol defines the way members of a clique send data anonymously and detects
tampering of messages. It consists of three phases:

Reservation Phase Members wishing to send during the next round reserve a random slot
in a bit vector and anonymously broadcast this vector to all other members. All others
anonymously broadcast the bit vector with no slots reserved to all other members.

Transmission Phase Each node that has reserved a slot in the reservation phase anony-
mously broadcasts its message in the appropriate slot. Since in a DC-network, all
participants (including the sender) also receives the broadcast message, collisions and
malicious tampering is easily detected (not prevented) by the sender by comparing the
data it sent with the data it receives. If collision or tampering occurs, the sender simply
tries to re-send during the next around. Alternatively, the sender may choose to join
another clique.

Exit Phase This phase serves to protect long-running network transactions against traffic
analysis. Nodes may anonymously request other nodes to delay their departure if it
is engaged in a long-running transaction. However, it cannot force nodes to stay in
the clique, since these may simply leave abruptly by crashing or ignore the request
altogether.

By virtue of the properties of DC-networks and the three phases in the round protocol, Her-
bivore is resilient to a number of different attacks. Collusion attacks where malicious nodes
gather in a clique to single out communications by the remaining node are made less proba-
ble by the random entry protocol. The threat of DoS-attacks through a large number of mali-
cious nodes joining simultaneously is mitigated by rate-limiting joining. Herbivore does not
provide a disruption protocol but instead suggests that nodes join another clique if disrup-
tion occurs.

Finally, Herbivore is not resistant to statistical analysis against long-lived transactions. If a
particular node, A, is disproportionately often a member of a clique which contacts a par-
ticular server, the attacker has statistical reason to believe that A is the node communicating
with that server. According to [GRPS], this is a fundamental limitation of any system that
provides anonymity in a clique.



CHAPTER 2. ANONYMITY 39

2.6.8 P5 (Peer-to-Peer Personal Privacy Protocol)

P5 is an anonymizing system built on the broadcast technique to provide users with unob-
servability, but mitigates the negative effects of scaling such a system by creating a hierarchy
of broadcast channels, constructed as a binary tree. Participants choose themselves at which
level in the tree they wish to be placed in; lower levels provide stronger anonymity because
there are more groups a participant could be in, but it comes at the expense of efficiency,
because messages have to be broadcasted to more nodes to reach their destination. Since
nodes, according to the protocol, are allowed to drop any message they see themselves un-
able to process for any reason, placing oneself at a low level in the tree may result in lost
messages.

All messages are encrypted such that only the recipient may decrypt them. This can be
achieved by, e.g., encrypting messages with the recipient’s pseudonym key. All messages
are also hop-by-hop encrypted.

Even a system like P5 , however, does not scale well due to its excessive traffic overhead.

2.7 Summary of Properties

This section summarizes the properties of the four techniques presented in this chapter on
which anonymizing systems can be build. First, table 2.4 summarizes the anonymity prop-
erties of each technique.

SA RA UL RespA UO
Proxy X(1) ÷ ÷ ÷ ÷

Mix-networks X(1) X(1) X X(2) ÷
DC-networks X X(3) X X ÷
Broadcasting X X(3) X X X(4)

Table 2.4: Summary of anonymity properties for different anonymizing techniques. SA: sender
anonymity, RA: recipient anonymity, UL: unlinkability, RespA: responder anonymity, UO: unob-
servability.

(1) This only holds if an adversary is not able to perform either a wiretapper or an edge
attack (as described in the beginning of this chapter).

(2) Responder anonymity is achieved by the sender encrypting the message with a pseudonym
key that does not identify the sender but only holds if the adversary is not able to com-
promise the last node on the reply path.

(3) Recipient anonymity is achieved by encryption of the message with the recipient’s
pseudonym key.

(4) In general, unobservability can only be provided by systems built on the broadcast-
ing technique where all messages are sent at a constant rate by all participants to all
participants and are indistinguishable from white noise.
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The proxy (single, forwarding node) or a similar Crowds-like technique with multiple, for-
warding nodes provides an efficient way to achieve sender anonymity. The number of mes-
sages depend on the number of forwarding nodes that they pass through. The biggest ad-
vantage of the proxy technique is the simple design that allows for efficient implementations.
The biggest disadvantage of the proxy technique is the single point of failure and trust that
makes the technique vulnerable to both passive as well as active adversaries.

Mix-networks provide reasonably efficient, anonymous two-way communication (respon-
der anonymity) and a method of achieving unlinkability against primarily passive adver-
saries using public key cryptography. As in the proxy technique, the number of messages is
dependent on the number of mix-servers that a message has to pass through. Mix-networks
introduces delays when batching (and reordering) messages and hence some systems based
on mix-networks might not be suitable for real-time applications such as web browsing or
instant messaging.

DC-networks (can) provide unconditional anonymity at the expense of an increase in the
number of messages transferred. In the case of “original” DC-networks (where recipients
are part of the network), the total number of messages is k2 − k. In the case of external
recipients, the number of messages is k. Other than the high number of messages compared
to the proxy or mix-network technique, a disadvantage of DC-networks is the hard problem
of stopping disruption. More practical solutions that only achieve computationally secure
anonymity is possible through the use of public-key cryptography and/or pseudo-random
number generators.

The broadcasting technique achieves unobservability at the expense of all users sending
messages at a constant rate to all other users.

Specific systems have the same anonymity properties as the technique on which they are
built but due to the peer-to-peer factor both passive and active attacks become harder to
perform than in traditional systems built on the same techniques and thus peer-to-peer
anonymizing systems are intuitively more secure.
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Accordion

In this section we present the design of a low-latency, anonymous, peer-to-peer file storage
application, Accordion (the same overall design goals as Freenet) built on an existing routing
layer. The overall purpose of Accordion is for a user to be able to anonymously store a file
in a peer-to-peer network and for another user later to be able to (anonymously) retrieve the
file with only a small delay.

The following list comprises the design goals for Accordion:

• Sender anonymity for publishers of data.

• Sender anonymity for storers of data when sending data to a client during retrieval.

• Strong deniability for storers of data, ie. they can provably deny having any knowl-
edge of the data they are storing.

• Public, scaleable and fully decentralized (real peer-to-peer) network.

• Lookup guarantees for requests, ie. if a requested piece of data exists in the network,
the system must guarantee returning it to the requestor.

• Low latency transfers of small to medium sized files.

• High degree of availability of published files in the face of multiple node failures.

We will use the term “publication” (and hence the terms “to publish” and “a publisher”) to
describe the process of storing a file in the network.

3.1 Design Goals

Before presenting Accordion itself, the details of the design goals are described.

41
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3.1.1 Anonymity

In a file-storage system a user publishes a file to a number of nodes in the network and these
nodes will store the file for a certain time. If perfect anonymity is assumed, no one will,
when publication is complete, be able to link the file with its original owner 1. The fact that
users will thus issue requests to the nodes in the network that store the file and not to the
publisher (as in a file sharing system) suggests that the storers of a file need a stronger type
of anonymity than the publisher because an adversary has more time to perform attacks on
the storer of a file than on the publisher of the file.

The anonymity of senders is considered more important than that of clients receiving files
and thus recipient anonymity for clients is not part of Accordion. The reason why sender
anonymity is considered more important is because nodes in a file storage system that store
files for other nodes should not be held accountable for the contents of these files.

Unlinkability is not an obvious demand in an anonymous file-storage system because there
are no long-lived communication channels on which to perform attacks to break unlinkabil-
ity for a given message between two endpoints. Who communicates with whom changes
constantly due to the nature of the application.

Unobservability is considered an overly strong type of anonymity and is thus not a design
goal. Also, the technique to achieve it is too expensive if the system is going to be used in
practice.

3.1.2 Low Latency

To meet the goal of low latency transfers of files, the system cannot be built on a technique
that introduces long delays as some mix-networks designs do [Din]. Delays in the order of
seconds due to extra routing hops are acceptable, however.

3.1.3 Real Peer-to-peer

Anyone should be able to run an Accordion node and there should be no central authority
to control who joins the network and who can shut down the system by e.g. performing
legal attacks. Also, the system must be able to scale to thousands or even millions of users.
The potential distribution of nodes across the entire planet increases latency because of more
(and perhaps longer) routing hops compared to direct TCP connections but it also makes it
harder for an adversary to e.g. break a certain node’s anonymity or perform censorship-
resistance of a given file.

These goals suggest designing the system as a real peer-to-peer network. To avoid having
to design a peer-to-peer network from scratch, Accordion should be built on top of an ex-

1Of course, the contents of the file might expose the publisher but this is the responsibility of the users and
not the system.
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isting routing layer whose job it is to route messages in the peer-to-peer network. To route
messages efficiently and to provide lookup guarantees, the routing layer must be structured.

Several different structured routing and location schemes exist, e.g., Tapestry [ZKJ01], Pas-
try [RD01a], Kademlia [MM02], and Chord [SMLN+03].

The design of Accordion is independent of a specific routing layer, but Pastry is chosen
because a freely available implementation [PDZ04] that has been used in several real ap-
plications, e.g., PAST [RD01b], Scribe [CDKR02], and SplitStream [CDK+03], exists. The
following describes how Pastry works.

Pastry

Pastry is the specification of a peer-to-peer, self-organizing overlay network which enables rout-
ing and location of messages between nodes. It is used as the underlying routing mecha-
nism for Accordion, and the details of terminology, routing, and location shall therefore be
described here.

In Pastry [RD01a], each node is assigned a unique id, usually computed by calculating a
hash of the node’s IP address. Using a secure hash function such as SHA-1, all node ids
will—with high probability—be uniformly distributed over the set of all possible values of
node ids.

Routing a message from source to destination requires a key. Pastry routes a message to the
(live) node with the node id numerically closest to the key (called the root node for that key).
Each node through which a message passes forwards the message to a node whose node id
shares with the key a prefix that is at least one digit longer than the prefix that the key shares
with the current node (for this reason this technique is known as prefix routing). In case no
such node exists in the current node’s routing table, the message is forwarded to a node
whose node id shares a prefix with the key as long as the current node, but is numerically
closer to the key than the current node id. According to [RD01a], this is always possible.

The average number of routing steps in Pastry is less than log2b(N), where N is the number
of nodes in the network and b is a configuration parameter with a typical value of 4, so that
the average number of routing steps is less than log16(N).

Part of the routing information kept by each node in the network is called the leaf set. It
contains the ids of the l/2 numerically closest smaller and l/2 numerically closest larger
nodes present in the network, for the same configuration parameter l.

According to the original Pastry paper [RD01a], Pastry exhibits a short routes property. Ex-
periments show that the average distance traveled by a Pastry message is between 1.59 and
2.2 times the underlying Internet route, where “distance” typically is measured in terms of
ping latency.
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3.1.4 Availability

It is an important task of a file storage system such as Accordion to increase the availability
of files stored in the system. Three commonly used methods are:

1. Replication of files. All data (files) is stored n times, amount of disk space used to store
data increases by factor n.

2. Erasure coding of files, where data is split into n parts, of which m arbitrary parts is
needed to reconstruct data (m ≤ n). Needed amount of disk storage and bandwidth
increases by 1/r, r = m/n.

3. Both of the above, so that data is split into n parts and each fragment is replicated n
times. Needed amount of storage and bandwidth increases by factor n/r.

According to [WK02], using replication increases disk and bandwidth usage by a factor 11
compared to using erasure coding. However, erasure coding results in a higher number of
lookups to contact the nodes that store each of the parts, whereas contacting the node storing
a replicated file only requires one lookup.

3.1.5 Deniability

Anonymity protects the identity of the nodes that store data. Deniability is a property that
is useful if a node’s anonymity has been broken. Deniability comes in two forms:

Plausible deniability is the ability for a node to plausibly deny knowledge of content stored on the
node.

Strong deniability is the ability for a node to prove that it could not have knowledge of content stored
on the node.

Erasure coding combined with a secret sharing scheme both increases availability and makes
strong deniability possible at the best disk usage/bandwidth ratio. The following section
describes the details of erasure coding and secret sharing and how to combine them.

Erasure Coding and Secret Sharing

A secret sharing scheme has the same property as an erasure coding scheme that data is
split into n parts, of which m arbitrary parts are needed to reconstruct the data. However,
a secret sharing scheme enables partitioning data, here known as the secret S, into n parts
in such a way that any subset of m parts, m < n, make S easily reconstructable, but even
complete knowledge of any m − 1 parts reveals no information about S. This is also called
an m-threshold scheme.
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It can be shown [Kra94] that for a secret sharing scheme to achieve perfect (information
theoretic) secrecy, each of the n parts must be of length at least as S itself, which is impractical
for the purposes of, e.g., file storage.

Krawczyk [Kra94] has devised a strong, space-efficient and computationally secure secret
sharing scheme in which each part is of size |S|/m + |k| where |k| is the size of a symmetric
encryption key, typically 128 or 256 bits. The size of this key does not depend on the size of
S. The scheme uses an erasure coding algorithm in addition to a secret sharing scheme to
achieve a smaller part size. Using erasure coding, each part is of size |S|/m (as opposed to
size |S| in a secret sharing scheme), but erasure coding schemes alone do not have the strong
property that each share will provably not reveal any information about S.

In Krawczyk’s scheme, the secret S is first encrypted using a symmetric encryption algorithm
and a key k. Then, the encrypted secret, C, is partitioned into n parts using erasure coding.
The key is also partitioned into n parts, but using perfect secret sharing instead of erasure
coding. Since it is reasonable to assume that |k| � |C|, the partitioning of k using secret
sharing is not expected to increase the overall resource usage in any significant way.

Distributing S in this scheme is done by distributing all n pairs of the form (Ci, ki), 1 < i < n
to the participants. Any m participants may now reconstruct S easily by first reconstructing
the key k, then reconstructing the encrypted secret C, and finally use k to decrypt C. Any m−
1 or less participants will not be able to gain any information about k due to the properties of
secret sharing, nor will they be able learn anything about S because it was encrypted before
erasure coding.

A general point to note regarding erasure coding and secret sharing is that a participant
wishing to reconstruct the original data must contact m data providers (nodes) instead of
just a single provider as is the case without erasure coding or secret sharing. This may result
in a higher, total latency before the data can be reconstructed, but in exchange for this loss
efficiency comes a higher assurance for the client that the data is retrievable, because more
than n − m + 1 nodes must be unavailable before it is no longer possible to reconstruct the
original data.

3.2 System Overview

Accordion is a peer-to-peer, file storage system. The design is based on the idea of storing
(parts of) files in small DC-networks (with external recipients) that are part of the larger
network similar to the Herbivore design. In Accordion, however, nodes are only members
of cliques, ie. are part of a DC-network, if they help store data. Because cliques in Accordion
are built using PRNGs, only minimal communication between clique members is necessary
when the DC-network is set up, and no round protocol is needed. Also, because cliques
only exist when data is retrieved by a client, ie. nodes do not join a clique when they join the
network, no global topology algorithm is needed.

As in Herbivore, the size of the DC-network involves a tradeoff between the “degree” of
anonymity a node can achieve in that DC-network and the efficiency with which data can
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be sent from that DC-network.

Accordion has two basic primitives: publish and retrieve. These primitives will be explained
in the two following sections.

Storage of a file in Accordion is the process of a publisher sending the file into the network
anonymously to a number of nodes that can later supply the file to a client requesting it.
The actual file data is split into several parts using erasure coding, and each of these parts
are stored in the network separately by running the publish process once for each part. Re-
trieval of a file by a client is the process of requesting a sufficiently large number of parts to
reconstruct the file requested.

Different types of nodes store information that is necessary for a client to retrieve a file, ie.
a node in the network can play different roles that serve different purposes during either
publication or retrieval. Data that is stored in the network is either actual data (the parts of
the file) or some kind of meta data describing either the file or a part, including pointers to
nodes where the actual data is stored. The overall process of storing and retrieving a file in
Accordion is illustrated in figure 3.1.

Figure 3.1: The overall process of storing and retrieving a file in Accordion. A publisher stores a
file through a number of forwarding nodes, and at some point, five nodes set up a fully connected
DC-network between them. Each participant in this DC-network sends a data stream calculated the
same way as in section 2.3.5 to the client, which is then able to XOR the streams together to retrieve
the requested file.

In the following, an overview of the storage and retrieval processes in Accordion is given.
Technical details are deliberately omitted at first to make it easier to understand the overall
processes. In sections 3.3.1 and 3.3.2, this overview is followed by a more precise, techni-
cal description of the same two processes intended to “fill in the gaps” from the overviews.
Finally, in section 3.8, an analysis of the anonymity properties of and some attacks on Accor-
dion, is presented.

3.2.1 Storage Process Overview

The storing of a file consists of three overall steps:
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1. Storing file meta data (data that tells clients which nodes to contact to request the par-
ticular file, ie. pointers), including a file id that is calculated from the filename.

2. Splitting the file and the encryption key into several parts and storing each part sepa-
rately.

3. Setting up a DC-network per part that will provide that part of the file on request.

In step 1, the publisher stores meta data for the file he wishes to store. This meta data is
used later by clients to locate and request the file. In step 2, the publisher stores parts of the
file he wishes to store on random nodes. For each part, one of these nodes will choose to
save the part locally. The node that does this is called the part storer and this node, along
with a number of randomly chosen nodes are called the part provider list. The part storer,
together with the other nodes in the part provider list will later form a DC-network (step 3)
to anonymously provide a client with the particular part of the file stored by the part storer.

This marks the end of the publication process which provides sender anonymity to publish-
ers and storers of data. The next section describes how a client may retrieve a complete file
stored in this way knowing only the filename (file id).

3.2.2 Retrieval Process Overview

Retrieval is the process of sending a request containing a file id into the Accordion network
and getting back a sufficient number of the parts of the requested file, if available, to recon-
struct the file. The retrieval process proceeds in the following steps:

1. Retrieve ids of file parts.

2. Retrieve part provider lists for these parts.

3. Retrieve each file (and encryption key) part from nodes forming a DC-network for that
part.

In step 1 of the retrieval process, the client obtains the ids for the parts of the file he wishes
to retrieve. These ids will enable it to find the ids of the nodes forming DC-networks for
each part (step 2), and from each of these DC-networks he may now request one part of the
file and the corresponding part of the encryption key. Upon having retrieved a sufficient
number of file and encryption key parts, the client may reconstruct the original file locally.

The following sections present a more precise, technical description of the storage and re-
trieval processes in Accordion, including details of what data is included in the messages
described in the overview. It also gives some of the reasoning behind the design.
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3.3 System Details

This section describes the details of publication and retrieval in Accordion.

3.3.1 Storage Process Details

The details of the storage process is divided into a number of distinct steps, performed by
several different nodes. These steps will be described in the following. The whole process is
illustrated in figures 3.2 and 3.3. In the following, the publisher is the node wanting to store
a file in the Accordion network.

In the following, the symbol is synonymous with using a Crowds-like technique, so, e.g.,
A  B means A sends a message to B through a number of randomly chosen forwarding
nodes.

Step 1: H(filename) = fileId Calculate the hash of the file name using secure hash function
H, resulting in the file id. File identifiers in Accordion are chosen as the hash of some
descriptive string (in this case the file name) because it provides a convenient way to
create unique ids suitable for routing through Pastry, but in principle, any unique id
suffices. To protect against “key squatting” a signed-subspace key as in Freenet (as
described in section 2.6.3) could be used.

Step 2: Eenckey(file) = C Encrypt the file using symmetric encryption algorithm E with en-
cryption key enckey, resulting in the encrypted file, C. The reason why the file is en-
crypted before erasure coding is that it ensures that the nodes that will store data (as
explained later) can strongly deny having any knowledge of whatever parts they are
storing for other users of the network. Erasure coding alone is not sufficient for strong
deniability, since it is not designed to make it impossible to gain any information about
the whole file from any one part. As described in section 3.1.5, a secret sharing scheme
provides the property that any subset of m, m ≤ n parts will reconstruct the original
data, but no m− 1 parts will reveal any information about the original data. However,
to ensure this property, each of the n parts must be at least the size of the original data
which makes it unusable in a system like Accordion because files can be big. Instead,
the scheme described in section 3.1.5 is used, and that is the reason why the file is en-
crypted and erasure-coded and the encryption key split using a secret sharing-scheme
before publication.

Step 3: EC(C) = part1, part2, . . . , partn Split the encrypted file C into n parts using any suit-
able erasure coding algorithm, EC, resulting in parts 1 . . . n.

Step 4: H(part1) . . . H(partn) = part id1, part id2 . . . part idn Calculate the content hash of all
created parts individually, resulting in the part id list, and create a list of tuples of the
form (part id, part size, part data), one for each part.

Step 5: SS(enckey) = enckey1, enckey2, . . . , enckeyn Split the symmetric encryption key enckey
into n parts using any suitable perfect secret sharing scheme.
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Step 6: Publisher Meta root node : (fileId, part id list) Through a number of randomly
chosen forwarding nodes, send the file meta data to the meta root node for the file id.

Step 7: Publisher PSi : (parti id, parti size, parti, enckeyi), 1 < i ≤ n Also through a num-
ber of random forwarding nodes, for all n parts, send a tuple consisting of a part of the
file, its id and size and a part of the encryption key to a random node that will act as
part storer.

Figure 3.2: Step 6 of the publication process: publication of file meta data (file id, part id list) from the
publisher to the meta root node through a number of random forwarders.

When one of the n part storers receive the message from step 7, it executes the following:

Step 1: GeneratePPL() = part provider list The part provider list or ppl is a list of k unique
randomly chosen node ids, including the part storer’s own node id, that will provide
a client with a part during retrieval by being set up as a fully-connected DC-network
among the k nodes. As described earlier, the value of k involves a tradeoff between the
number of nodes that the part storer can remain anonymous among and the overhead
in the amount of data transferred. After the list has been generated, the part storer
shuffles the list such that no one will be able to determine the part storer’s identity
merely by its position in the list.

Step 2: GenerateSeedList() = seed list The seed list is a list of (own id,(neighbour id,seed))
pairs specifying seeds for all edges in a fully-connected DC-network using PRNGs as
described in section 2.3.3. The seed list thus specifies, for each node in the ppl, a list of
its neighbours and the value of the seed which it shares with that neighbour. A seed
list for one node will be known as a local seed list.

Step 3: Part storer Part publisher : (part id, part size, enckey size, ppl, seed list) The part
meta data contains the sizes of that part of the file and encryption key such that the other
part providers will know how many bytes to XOR when sending data according to the
DC-network protocol during retrieval.
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The part meta data gets sent through a number of forwarding nodes chosen randomly
only from the ppl itself to the part publisher, ie. the node that will finalize the part as
described next. This node is necessary, because if the protocol stated that the part storer
was responsible for submitting part provider list to the part root node, then the part
root node would know the identity of the part storer.

When forwarding, the part storer and the part providers must choose a node from
the part provider list. In the case where the part storer could choose to forward the
message to any node in the network, such a node receiving the message would be
able to suspect that the sender of the message was the part storer because it would be
unlikely that the part storer had chosen another part provider node first and that node
then had forwarded the message to the “outside” node.

Figure 3.3: An illustration of the part publication process. The Publisher forwards a message con-
taining (part id, part, enckey) through a number of forwarding nodes, one of which chooses to be Part
Storer. The part storer then forwards a message containing (part id, part size, enckey size, ppl, seed
list) through a number of forwarding nodes (all members of the part provider list) and one of these
chooses to be Part Publisher and forwards (part id, part size, enckey size, ppl, local seed list) message
to each of the nodes in the part provider list and (part id, ppl) to the part root node.

Upon receiving the message originally from the part storer from one of the other part providers,
the part publisher executes the following algorithm to complete the publication of the part.

PartPublisher → PartRN : (part id, ppl) The part publisher sends the part id and the part
provider list to the part root node for that part.

PartPublisher → all other nodes in ppl: (part id, size, ppl, local seed list) For each of the k−
1 other nodes in the ppl, the part publisher sends the part id, the part size, the part
provider list and the local seed list. This is done to ensure that all nodes in the part
provider list know that they are part of the DC-network for that particular part. A
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node in the part provider list receiving a message of this form checks to see if the list
contains exactly k elements and that its own node id exists in the list and saves or
discards the message accordingly.

Root nodes (meta and part) do not overwrite entries in case of identical ids (file or part).
Instead, they save multiple entries and return these to the client during retrieval (see next
section).

To ensure strong deniability there must be separate root nodes for the file id and the part
ids such that part storers and part providers cannot ascertain—knowingly or accidentally—
which file the part they are storing (or providing) is a part of.

Publication of a file is considered successful iff:

• One meta root node saves the tuple (fileId, part id list).

• At least m of n tuples on the form (part id, part provider list) are saved by one part root
node per part.

• At least m of n part storers save the tuple (part id, part, enckey).

• At least k×m part provider nodes (including the part storer) receive and save the part
meta data (part id, part size, enckey size, ppl, local seed list) generated by the part
storer.

Since replies are not used during publication the only way to discover whether a file was
successfully published is to try to retrieve it at a later point.

3.3.2 Retrieval Process Details

Retrieval of a file is the process of supplying a file id to some nodes in the network and
getting back either the requested file or an error code. The process is illustrated in figure 3.4
and consists of several steps as detailed below.

Step 1: H(filename) = fileId The client calculates the hash of the file name to get the file id.

Step 2: Client → MetaRN: (fileId) The client sends the file id to the meta root node for that
file id.

Step 3: MetaRN → Client: (fileId, part id list) The meta root node responds with the part
id list for the given file id (or a list of part id lists if the meta root node is storing
multiple, identical file ids) or an error code in case the meta root node didn’t have
entry for the file id.

Step 4: Client → all n PartRN: (part id) If a positive reply was received from the meta root
node, the client sends, in parallel, a part id to each of the n part root nodes.
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Step 5: All n PartRN → Client: (pid, ppl) Each of the n part root nodes respond to the client
with a part provider list for the requested part id (or a list of part provider lists if the
part root node is storing multiple, identical part ids) or an error code in case the part
root node didn’t have entry for the requested part id.

Step 6: Client → all k nodes in ppl: (part id) If a positive reply was received from a part
root node, the client sends, in parallel, the part id to each of the k part provider nodes
in the corresponding part provider list to request that part.

Step 7: All k nodes in ppl → Client: (part id, DC-outcome) Each of the k nodes in the part
provider list reply with the part id and the outcome of executing the DC-net protocol
as described in section 2.3.5. Included in the DC-outcome is the part data and the
encryption key data. Together, the nodes in the part provider list provide the client
with one part of the file and one part of the encryption key.

If the client successfully receives m parts of a file and m parts of the corresponding encryption
key, enckey, it can reconstruct enckey and the file—and finally decrypt the file using enckey
resulting in a succesfully retrieved file.

Figure 3.4: Retrieval of the file meta data and one part of the file and encryption key.
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3.4 Node Join And Leave

Accordion is public system and hence any node can freely join the network by supplying
the IP address of a bootstrap node, ie. a node that knows a number of other nodes in the
network. When a node joins the network it will perform checks to see whether it will be
responsible for any ids (play the role of either meta or part root node). This is described in
the next section. This check is not performed by part providers because messages for part
providers are routed for the exact node id of the part provider and thus a node joining the
network cannot end up getting a message originally intended for an existing part provider.
This is also a security measure to ensure that an active adversary cannot insert itself in “the
middle of” a part provider list and thus try to single out the part storer by controlling k− 1
in the DC-network (see section 3.8.4).

Nodes can leave the network at any time and there is no exit protocol. This is because
nodes can disconnect (voluntarily or by failure) at arbitrary times and hence a exit protocol
might not be executed. Only part provider nodes locally saves (persists) any data (meta
or actual) that it is responsible for when they disconnect from the network (or periodically
while connected), such that if/when the node later connects, its state can be restored (of
course, this state might not be useful anymore because of changes in the network, e.g. one
or more other nodes in ppls that the node is a part of might have disconnected).

3.5 Availability

As described in section 3.1.5, to increase the availability of files stored in a file storage system
both replication and erasure coding can be used. Increasing the availability of a file not only
means increasing the availability of the file itself but also of the meta data describing the file.

As described in section 3.1.5, the availability of the actual files is ensured through erasure
coding producing a number of parts that constitute a file. The same technique could be
used for ensuring availability of the meta data describing the file but since the size of meta
data is usually small (compared to files themselves) this would result in an unnecessary
high number of lookups each returning only very little information (1/n of the meta data).
Therefore, replication is chosen for ensuring availability of meta data in Accordion.

In Accordion, two types of meta data exists:

• Meta data describing the file (stored on meta root nodes)

• Meta data describing the parts (stored on part root nodes)

Each of these types of meta data are replicated as follows: when a node becomes root node
(meta or part) for an id (file or part) it sends the corresponding row (key,value) to the j nodes
in the leaf set with id numerically closest to the id (and itself). It is then the job of Pastry
to notify Accordion about changes in the leaf set, ie. if a node joins or leaves, such that the
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row can always be found on the j nodes with node ids numerically closest to the id. This is
identical to how PAST [RD01b] maintains j replicas of files and how TAP maintains tunnels,
see section 2.6.5.

3.5.1 Attacks

Attacks on the availability of files will be carried out by attacking one of the three previously
mentioned entities that constitute a file. Generally, three types of attacks are possible:

• Disconnecting nodes (either root nodes or part storers) making certain parts or even
files unavailable (until the file is possibly republished, see next section).

• Causing disruption in the DC-networks.

• Acting maliciously in some other way by e.g. not forwarding messages or not saving
data.

Direct protection against these attacks is not offered by Accordion. Instead, two factors either
implicitly protect against the attacks or minimize the effects of the attacks:

• The peer-to-peer factor (see section 2.5), e.g. the geographic or administrative dispersal
of nodes makes it hard for a limited adversary to control or attack specific nodes.

• Erasure-coding of files and replication of root node data. Even if an adversary is able
to disconnect specific nodes or act maliciously as described above, it is unlikely that it
will be able to make more than n−m + 1 parts unavailable.

Other systems such as Free Haven [Din] attempt to identify malicious behavior by the use
of a reputation system. Research is, however, still needed in this area and is out of scope for
this project.

Attacks on the anonymity of Accordion will be described in section 3.8.

3.6 Data Management Strategy

Only a finite amount of disk space exists and thus the storage of a file in Accordion (or any
other file storage system) will fail if there is no free disk space. Several solutions to this
problem are possible:

• Introducing a timeout value when publishing files. This way a publisher would set a
timeout value in e.g. hours or days on the file level (or −1 for no expiration) and both
root nodes and part providers would periodically check the status of their tables and
delete entries that have timed out. Of course, it could not be guaranteed that nodes
would actually neither save nor delete entries according to the protocol.
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• Adding the ability to delete files (and meta data). Authentication of users could be
done in a way similar to Freenet’s signed-subspace key but using a pseudonym key as
not to identify the publisher. Since users can (should) not be forced to delete their files
this does not guarantee available disk space.

• A distributed garbage collection process could detect “stale” parts by detecting stale
part provider lists, ie. part provider lists where one or more nodes have disconnected.
Note that a signal could not be sent to the publisher of a file because its identity is not
known.

It is not a design goal of Accordion to offer permanent file storage. Rather, publishers of
files are expected to republish their files periodically. An alternative to this would be for part
storers to automatically and periodically republish the part(s) they store. This could be done
in two ways:

• If part storers republish parts and then delete them, availability of those parts wouldn’t
necessarily be increased since the new nodes that would become part storers could
disconnect from the network moments after becoming part storers, making the parts
unavailable.

• If part storers republish parts without deleting them locally then parts are effectively
replicated which increases disk and bandwidth by a factor of 11 (see section 3.1.5)
which is unacceptable.

Therefore, manual republication by publishers is chosen.

3.7 Miscellaneous Design Issues

This section briefly describes some design issues that are relevant in a file-storage system.

3.7.1 Censorship-resistance

A censorship-resistant system is a system with the property that it is hard for any adver-
sary to exercise censorship on a given file in such a way that the file becomes unavailable.
Anonymity is often used as a tool in censorship-resistant systems. This is because users do
not only want their content to remain available but also to be anonymous when publishing
or retrieving it.

Although relevant for a file-storage system, censorship-resistance is not a direct goal in Ac-
cordion and therefore, only the minimal censorship-resistance that erasure coding of files
and replication of meta data offers, is provided. Systems such as Publius [MWC00], Tan-
gler [WM01] and Free Haven [Din] focus on censorship-resistance.
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3.7.2 Load-balancing

Root nodes that point to popular parts might experience a massive amount of requests and in
those cases load balancing would be useful to reduce the CPU and bandwidth consumption
of these nodes. One way to do this, is to build a multicast group (using e.g. Scribe [CDKR02])
such that all nodes in the group hold the root node information and then using anycast upon
retrieval contacting an arbitrary node in the group. The node that is contacted in the group
is dependent on the client’s position in the network. This balances the load over the entire
group.

There is no obvious way to load balance part provider lists that provide parts that are part
of popular files but the fact that clients can retrieve arbitrary m parts of a file provides some
implicit load balancing.

3.7.3 Searching for Keys

Accordion does not provide a direct mechanism for searching for file identifiers, or keys:
the client has to know the precise filename that the file was published under to be able to
calculate the file id and retrieve it.

One way to improve upon this (as suggested in Freenet [CMH+02]) is to extend meta data
by adding additional descriptive keywords when publishing a file. This way several root
nodes will hold pointers to the file and the client can find the file without knowing the
precise filename of the file.

3.7.4 Updateable Files

It is not possible for a user that has stored a file in Accordion, to update that file later. An al-
tered version of a file stored later can be seen as an updated file and thus Accordion supports
so-called archival storage as in e.g. OceanStore [KBC+00].

An update function could be implemented using a content hash key as described in sec-
tion 2.6.3.

3.8 Anonymity Properties

In this section we present the anonymity properties of Accordion. The roles that seek anonymity
in Accordion are the publisher and the part storer. The publisher obviously seeks sender
anonymity during both the publication of meta data and parts. The part storer seeks sender
anonymity during publication and during retrieval when sending a file to a client.

Unlinkability is not an explicit demand for Accordion and hence only protection against pas-
sive adversaries via payload encryption and padding is offered. Neither unobservability is a
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goal for Accordion and it is not possible because white noise is not used during publication
and the client is not part of the DC-network during retrieval, so all participating nodes in
the DC-network will know the identity of the client.

In general, the publisher achieves the anonymity properties of the basic proxy technique de-
scribed in section 2.1.1 because of the Crowds-like technique used and the part storer achives
the anonymity properties of the DC-network technique described in section 2.3 during re-
trieval including any attacks described on these techniques. The part storer also achieves
recipient anonymity wrt. the publisher because the publisher cannot know which node
chooses to save the part.

Accordion uses payload encryption on all Pastry links, ie. the link between the source of a
Pastry message and the message’s final destination, such that a passive adversary can only
tell that any observed message is a Pastry message (the TCP payload is encrypted but the
port number for the Pastry application is in cleartext). If all Pastry traffic to and from the
node whose connection is being monitored (publisher or part storer) is encrypted, a passive
adversary will not be able to break that node’s sender anonymity, because it cannot deter-
mine whether the message sent was a message sent by Accordion or another application
built on top of Pastry. If the adversary knows that Accordion is the only application built
on Pastry that encrypts messages, the adversary can break the node’s sender anonymity but
cannot know for what.

During both meta- and part-publication an active adversary controlling the first randomly
chosen node after the publisher, cannot break neither the publisher’s sender anonymity be-
cause eventhough this node can see the message in cleartext it will not know whether the
source address it sees is the original source address, cf. the proxy argument. Also, during
part publication, the message sent from the part storer to the first node in the part provider
list is padded to the size of the message that contained the part. Due to this and the proxy
argument neither a passive nor an active adversary will be be able to identify the part storer.

Below is a non-exhaustive, but representative list of attacks and how they affect Accordion’s
anonymity properties.

3.8.1 Passive And Active Attack

From the properties above it follows that if a passive and an active adversary collaborate they
will be able to break the publisher’s sender anonymity for a given file or part (meta- or part-
publication, respectively) because the passive adversary can perform the wiretapper attack
and know that the publisher is publishing something and R1 will know what was published.

3.8.2 Volume Attack

A passive adversary can also use the volume of messages going out of a node to perform the
wiretapper attack. If this adversary observes a suspiciously large number of messages going
out of a node, all of the same size and equal to that of a message containing a part, it can
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with high probability conclude that this node was publishing something thus breaking the
node’s sender anonymity because it is unlikely that any other non-publishing node would
send out the same number of equally sized messages in such a short time frame. Again, if
the attack is combined with an active adversary controlling (some of) the destinations of the
outgoing messages, the attack can reveal (some of) the parts that were published.

This attack can of course be avoided if a delay between each published part is introduced.

3.8.3 Statistical Attacks

At least two types of attack where a distributed adversary gathers statistical information to
break (sender) anonymity of nodes are possible in Accordion. The first is similar to the pre-
decessor attack described in 2.6.1 and the second is similar to the statistical attack described
in 2.6.7.

Predecessor Attack A predecessor-type kind of attack can be carried out in Accordion by
an active adversary controlling a number of nodes in the network, ie. collaborating nodes.
Each path set up during publication of either meta or part data corresponds to a path ref-
ormation because each message takes a different route through the network. This means
that the publisher will be the node that most often appears as the predecessor to one of the
collaborating nodes and these nodes can gather statistical evidence to break the publisher’s
sender anonymity.

Herbivore Statistical Attack An adversary observing a node in Herbivore disproportion-
ately often being a member of a clique that contacts a particular server, has statistical rea-
son to believe that the node is communicating with that server and thus break its sender
anonymity. The same attack in Accordion would be carried out by an adversary retrieving a
specific part multiple times over a longer period of time and observing that a particular node
was always a member of the part provider lists for that part. This is not the case, however, as
part storers stay in the same part provider list. Also, if a file is republished, it is very unlikely
that the same nodes (in a big network) would be chosen as part storers again.

3.8.4 k-1 Attack

An adversary that has compromised the k − 1 other nodes than the part storer in a part
provider list will be able to break the part storer’s sender anonymity because it knows that
only that node could store the part. Equivalently, if the part storer chooses k − 1 nodes
controlled by the adversary when creating the part provider list, the adversary will be able
to break the part storer’s sender anonymity.

All attacks so far has been on the publication process. If no attacks have taken place during
publication, the sender anonymity of the part storer during retrieval cannot be broken due
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to the nature of DC-networks.

The attacks on Accordion described above are hard to perform because nodes are chosen
randomly throughout the entire network and it is hence unlikely that an adversary is able to
compromise or listen on the connections of the “right” nodes. An adversary that is able to
perform one of the attacks on the part storer described above will only break anonymity for
the given part. In that case, the part storer has strong deniability. Attacks on the publisher’s
sender anonymity will also with high probability only break the anonymity for one or few
parts because it is unlikely that the adversary is lucky enough to control all the nodes that
are chosen as the first nodes on the publication paths of seperate parts.

3.9 Comparison of Systems

The only existing system that matches Accordion’s overall design goals (anonymous, low-
latency, peer-to-peer file storage) is Freenet. It is therefore relevant to compare the properties
of Accordion with those of Freenet.

Freenet uses a Crowds-like technique during both publication and retrieval and thus achieves
the anonymity properties of this technique. However, unlike the basic proxy technique,
Freenet, like Accordion, achieves recipient anonymity during publication wrt. the publisher
and a passive adversary that cannot perform a wiretapper attack on the node that will store
the file because these entities cannot know which node will ultimately store the file (the
key-node link cannot be established). In Accordion, though, recipient anonymity is only
achieved among the k nodes in the part provider list.

Freenet is susceptible to some of the same attacks as Accordion, e.g. the Predecessor attack
(described in the previous section).

When a file is retrieved in Freenet it is cached on the nodes on the reply path. Accordion
has no caching strategy and Freenet is thus likely to provide more efficient retrievals than
Accordion. Also, since files are erasure coded in Accordion, latency is likely to be higher
since more nodes must be contacted to retrieve a file. Finally, the amount of data transferred
during retrieval in Accordion is k doubled due to the DC-networks.

On the other hand, Accordion provides stronger anonymity properties for storers (and thereby
senders) of data due to DC-networks. Accordion also provides strong deniability whereas
Freenet only provides plausible deniability.

Other systems have similar design goals, such as Free Haven, GNUnet and Publius. How-
ever, GNUnet is peer-to-peer but is file sharing (not file storage), Free Haven and Publius
are both centralized systems, Free Haven does not provide low-latency transfers and none
of the systems provide strong deniability.
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Implementation and Test

This chapter describes the implementation and test of a prototype of Accordion as presented
in the design in the previous chapter. The prototype should be seen as proof-of-concept
application. The Java code can be found in appendix A.

4.1 Implementation Overview

A prototype has been developed in Java and uses one of the Java implementations of Pastry,
FreePastry [PDZ04], as its routing layer. The prototype uses FEC [Cha01] for erasure coding
of files and the javax.crypto package for encryption routines.

The implementation has the following limitations compared to the design:

• Payload encryption and padding of messages. An adversary will thus be able to per-
form attacks as described in section 3.8.

• Strong deniability. The current prototype only supports plausible deniability since
decryption keys for published files are sent in one piece to meta root nodes.

• Backup of root nodes. If a root node (meta or part) leaves the network the correspond-
ing file / part ids will be unavailable unless published again.

• Random choice of part providers. The k nodes chosen for part provider lists are cho-
sen locally from the part storer’s routing table. This means that the prototype only sup-
ports DC-networks as large as the maximum number of unique nodes in the FreePastry
routing table.

Also, since the prototype is supposed to function as a proof-of-concept application, no real
user interface has been developed.

60
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Libraries that implement encryption, padding and secret sharing exist and thus payload
encryption, padding and strong deniability could be implemented within a reasonable time-
frame. Also, to implement backup of root nodes, FreePastry offers events that signal changes
in e.g. the route and leaf set (as described in section 3.5).

4.2 Implementation Details

Figure 4.1 shows a class diagram of the central classes of Accordion (excluding third-party
libraries).

Figure 4.1: A class diagram of the Accordion source code, excluding third-party libraries.

The MainApp class contains two methods to test publication and retrieval of a file, respec-
tively. The class also contains a list of PastryNode objects that each contain a reference to
an AccordionApplication. When a node publishes or retrieves a file from the MainApp, the
appropriate AccordionApplication object will take over. This object extends the PastryAppl
class from the FreePastry library and will in turn call methods in FreePastry for sending
messages. An AccordionApplication can send an AccordionMessage in one of the following
ways:

forward(AccordionMessage am) Send am to a randomly chosen node.

submit(MetaPublication mp) Send mp to the meta root node for mp’s id.

submit(Id rn, AccordionMessage am) Send am to the (part) root node for am’s id.



CHAPTER 4. IMPLEMENTATION AND TEST 62

Each method is implemented using the routeMsg method from PastryAppl that send the
message to the live node in the network with node id numerically closest to key.

An AccordionApplication contains references to the six different roles a node in the network
can play: Publisher, RandNode, MetaRN, PartProvider, PartRN and Client. Each of these
classes implements the AccNode interface that merely specifies that the role in some way
must be able to handle a message of type AccordionMessage.

In the following, each time a node saves a message, it does this by saving an object that
represents a row containing the same information as the message and adding this row to a
local table of these rows.

4.2.1 Publisher

The purpose of a Publisher object is – given a file and a corresponding filename – to publish
these as described in section 3.3.1. The publisher generates one MetaPublication message
and n PartPublication messages and sends each of these to a randomly chosen node. Each
of these nodes handles the message as described next.

4.2.2 RandNode

A RandNode object plays the role of a node that gets randomly selected by the Publisher
during either publication of meta data, publication of parts or by the part providers when
forwarding the message containing the part meta data within the part provider list. A
RandNode object handles an AccordionMessage according to the following list:

MetaPublication or StoredPart Forward or submit. When submitting, let a MetaRN or
PartProvider object handle the message, respectively.

PartPublication Forward or save. When saving, let a PartProvider object handle the mes-
sage.

PublishedPart Let a PartProvider object handle the message.

The probability of a RandNode object either forwarding/submitting or forwarding/saving
is controlled by two parameters:

PROB_SAVE The probability that a randomly chosen node will act as part storer and save
the part contained in the PartPublication message.

PROB_SUBMIT The probability that a part provider will submit the StoredPart message to
the rest of the part provider list and the part root node.

The effect of changing the value of these parameters can be seen in the tests in section 4.6.
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4.2.3 MetaRN

A MetaRN object handles a MetaPublication message by saving it locally (during publica-
tion) and a MetaRNMessage by returning any rows matching the file id contained in the
message to the source of the message, the client (during retrieval).

4.2.4 PartProvider

A PartProvider object either plays the role as the part storer or as one of the other nodes in
the part provider list. A PartProvider object handles an AccordionMessage according to the
following list:

PartPublication Save PartPublication message and hence become part storer. This includes
generating the part provider list, generating seed lists that specify the fully connected
DC-network, and sending a StoredPart message to a randomly chosen node within the
part provider list.

StoredPart This node will become the part publisher. This includes saving the StoredPart
message (if part storer != part publisher, otherwise the information will already have
been saved by the part storer) and sending a PublishedPart message to the remaning
nodes in the part provider list and a SubmittedPart message to the part root node.

PublishedPart Save the PublishedPart message (the part storer does not save it again, though).

PartMessage According to the DC-network protocol, send a message containing a stream
of bytes to the source of the original message. This means, if the node can find an
entry in its table corresponding to the id in the PartMessage, it will pull out the k − 1
PRNG-seeds for that id and create k− 1 “coins” (byte streams) to be XOR’ed together.
The part storer will also XOR the bytes of the file with the k− 1 byte streams.

4.2.5 PartRN

A PartRN object handles a SubmittedPart message by saving it locally (during publication)
and a PartRNMessage by returning any rows matching the part id contained in the message
to the source of the message, the client (during retrieval).

4.2.6 Client

A Client object takes as input a file id and is responsible for contacting the relevant nodes
to retrieve the corresponding file, if available at that time. A Client object handles an Accor-
dionMessage according to the following list:



CHAPTER 4. IMPLEMENTATION AND TEST 64

MetaRNMessage If the meta root node returned a MetaRNMessage containing one or more
rows, pick one of these, save it (using the session id as described below) and contact
the part root nodes corresponding to the part ids contained in the message.

PartRNMessage If a part root node returned a PartRNMessage containing one or more
rows, pick one of these, save it and contact the part providers in that row.

PartMessage If a part provider returned a PartMessage with a return code equal to 0, do the
following:

1. Find the bucket corresponding to the session id.

2. Find the subbucket corresponding to the part id.

3. If that subbucket does not exist, create it and in it save the byte stream sent by that
part provider.

4. If the subbucket does exist and there are fewer than k byte streams in it, save the
byte stream.

5. If k byte streams have been retrieved but not XOR’ed yet, XOR the k byte streams
to form a part. Also, increment a counter that keeps tracks of how many parts
have been succesfully retrieved.

6. If the value of that counter has reached m and the file has not yet been decoded,
decode the file and finally decrypt the file using the key saved when receiving
MetaRNMessage from the meta root node.

Since a part storer learning the corresponding file id for the part it is storing, would break its
plausible deniability, an integer session id is used to keep track of the incoming PartMessages
from part providers such that potential PartMessages from simultaenous file transfers can be
separated. A session id thus corresponds to a file id but without revealing any information
about the file.

4.2.7 Running the Application

The following briefly describes how the prototype application can be run either as a simu-
lated network or in a real network.

Simulated Network

Using FreePastry’s built-in network simulator an entire network can be simulated on one
physical node. The application takes the number of nodes as an argument and FreePastry
then creates a Pastry network according to [RD01a], including setting up routing tables, leaf
sets etc. Each of the nodes created will be a Pastry node with an Accordion application on
top. Once the network has been set up, a test publication followed by a test retrieval of a
junk file with a pseudo-random filename can be performed.
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Real Network

Due to the way FreePastry has been developed switching from a simulated to a real network,
is basically setting a flag. Then a Java runtime enviroment (JRE), FreePastry, FEC and of
course the Accordion application need to be deployed on the nodes that are going to make up
the network. When this is done, one node is started as a bootstrap node and the remaining
nodes are then started with a reference to the bootstrap node. From there on, the program is
run as in the simulated network.

4.3 Test Strategy

The purpose of the test is to verify the functionality of the Accordion. Test of third-party
libraries such as FreePastry and FEC have not been performed because (1) the correctness
of these libraries have already been tested by their authors and FreePastry has been used in
real-world applications such as PAST, Scribe and SplitStream, and (2) such tests are out of
scope for this work.

Full correctness tests have not been performed, ie. the application has not been tested for all
values of all possible parameters. To do this, a construction of a formal model of the system
is needed. Instead, the tests aim to convince the reader that the prototype implements the
functionality of the design correctly.

Also, because the tests have primarily been performed in a simulated network, performance
tests have not been performed. We can only verify that a file can be successfully retrieved
seconds after it has been published and that there are no delays when retrieving a file.

The following types of tests have been performed:

• Role test. Verification that all roles such as root nodes, part storers, and part providers
are handled by the correct nodes in the network using fixed parameters (see below).
This includes verification of the steps that make up publication and retrieval. A suc-
cesful role test is a prerequisite for the functional tests.

• Anonymity test. Verify that the Crowds-like and DC-network techniques that Accor-
dion uses for publication and retrieval, respectively, function properly.

• Functional tests. View the system as a black box and verify that a file can be success-
fully published and retrieved, adjusting different parameters.

Different parameters affect the test of a peer-to-peer application, e.g. network size and the
dynamics (ie. node join and leave) of the network. The following parameters have been
taken into account when performing tests on Accordion:

• The size of the network, N.
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• The size of the part provider list, ie. the DC-network, that provides a file to a client, k.

All tests have been performed in a simulated network, ie. using FreePastry’s built-in net-
work simulator. The application has also been tested successfully in a small LAN with 5-10
nodes.

4.4 Role Test

The following section presents an example of the publication and retrieval processes as they
work in the Accordion application, complete with output so as to illustrate and explain the
individual steps with a real example in a simulated network.

The parameters for the example are as follows:

Network size (N): 1000 nodes

Part provider list (DC-network) size (k): 5 nodes

Erasure coding: m = 4 and n = 16 (only the details of one part publication will be shown
below)

File name: �The meaning of Life.txt�

File contents: �In the beginning God created the heaven and the earth. And the earth

was without form, and void; and darkness was upon the face of the deep. And

the Spirit of God moved upon the face of the waters. And God said, Let there

be light: and there was light. And God saw the light, that it was good: and

God divided the light from the darkness. And God called the light Day, and

the darkness he called Night. And the evening and the morning were the first

day.�

PROB_SAVE: 0.1, to make it likely that the publication message will pass through many
nodes before being saved.

PROB_SUBMIT: 0.4, to make it unlikely that the message is passed around from one part
provider node to another many times.

File Name Hash (fid): 0xCA843F9B9BC8809CE76DAB3570F339402F330578

Encryption key: 0x59C05AF4EA8D4FD1

To enable direct comparison with the retrieved data later, here is a hexadecimal representa-
tion of the string from the excerpt from Genesis above:

Hexadecimal representation of contents in plaintext:

496E2074686520626567696E6E696E6720476F642063726561746564207468652
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068656176656E20616E64207468652065617274682E20416E6420746865206561

7274682077617320776974686F757420666F726D2C20616E6420766F69643B206

16E64206461726B6E657373207761732075706F6E207468652066616365206F66

2074686520646565702E20416E642074686520537069726974206F6620476F642

06D6F7665642075706F6E207468652066616365206F6620746865207761746572

732E20416E6420476F6420736169642C204C6574207468657265206265206C696

768743A20616E6420746865726520776173206C696768742E20416E6420476F64

2073617720746865206C696768742C20746861742069742077617320676F6F643

A20616E6420476F64206469766964656420746865206C696768742066726F6D20

746865206461726B6E6573732E20416E6420476F642063616C6C6564207468652

06C69676874204461792C20616E6420746865206461726B6E6573732068652063

616C6C6564204E696768742E20416E6420746865206576656E696E6720616E642

0746865206D6F726E696E67207765726520746865206669727374206461792E

(length = 454 bytes)

Before the file is published, its contents are encrypted. The encrypted contents are (in hex-
adecimal because the contents are no longer pure ASCII):

Hexadecimal representation of encrypted data:

0xD3D599E2FD5C18FE754468220830F7372B5CC6A683E3121384E61F196F8D679A

589967AA864F27E1EFB6E0ED7F18BCB3DF5D01DDAD8AEF083E7EC26278458E441E

E72DA0DC6C841D63EEB2221493FA4CAE44D6E6D5133862E56992C7488C9BC769CD

BC11AC8BBEE038F1D6BAA22EBCBC4B6CF400160C224CF447F6F405373FB2BE9E19

EF2E0F9244A3CE81CC7CA83E1FB173CE59C96E810B38C8F0FCAE8D6E121C46112C

865F2A796A25844659A4778628EF055C8741AF83017228CBCCEE6CB2E96EC06B0A

976751C45DEDE95E5581321E78A4BEC2D55FD69B480545872473F23CF9531B852E

7F9D489152AD77E28340C05E0F1D5CB4790776C3EC29F29B46ADE6C69B6A0BD0B3

3F7398D3ED4CE8D739B2675F4E4EDE2FBE9D7A502915B870FA8C6CABEA30915762

0277098F807007E5A13D7DF13A2141694FE68F258F62E3C2E912A8DA76FDC0B5DE

497C7BE09AC7F9979ED2BA7414107FEC85C747D27D44A9EFB79EA0844732A1DD2D

3A3F3E9C981829D606ED60252D39DE497C7BE09AC7F985355035EE4D239A1C6374

6BB5070C8777459F24B22D036A9AD8F08C62A031672BB5ADEA9E11F328B8C7DFA9

92104434EE17754E6A55B4DD2E107E350BC472D54B73EB614118BF10

The encrypted file is 456 bytes long (as opposed to the original string of 454 bytes), because
the encryption algorithm works on blocks of 8 bytes, and thus the length of the cipher text
is padded to the nearest multiple of 8. Note that if the same file is published twice, the
encrypted contents will differ because the encryption algorithm uses a new, random initial-
ization vector each time.

Parts of the contents of the 16 erasure coded parts and parts of their correspondig part ids
(hash of contents) are seen from the following program output:

Data for part 1: <0xD3D599...>, part id: <0xA6C65C..>

Data for part 2: <0xF40016...>, part id: <0x0F2EEF..>
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Data for part 3: <0x852E7F...>, part id: <0x0779B4..>

Data for part 4: <0x107FEC...>, part id: <0x2DDDA1..>

Data for part 5: <0x91C261...>, part id: <0xB80C71..>

Data for part 6: <0xF39C95...>, part id: <0xF99059..>

Data for part 7: <0x52D603...>, part id: <0x2C718D..>

Data for part 8: <0x902D97...>, part id: <0x3EE311..>

Data for part 9: <0xE793B1...>, part id: <0xC70488..>

Data for part 10: <0xFF4830...>, part id: <0xC463AD..>

Data for part 11: <0x5FFA40...>, part id: <0xC44C81..>

Data for part 12: <0x27F1C6...>, part id: <0x20E916..>

Data for part 13: <0x818224...>, part id: <0xF18F54..>

Data for part 14: <0xCB0481...>, part id: <0xAF047E..>

Data for part 15: <0xF993F7...>, part id: <0x6B6237..>

Data for part 16: <0x215AB1...>, part id: <0x95405D..>

4.4.1 Publication Test

The first step in publication is for the publisher to publish meta data for the file he wishes to
store. In this example, node <0xADD471..> is publisher:

Publisher <0xADD471..> publishing meta data for file id <0xCA843F..>

Random node <0x2E1E56..> forwarding MetaPublication for

file id <0xCA843F..> to another random node

Random node <0xA89BD6..> forwarding MetaPublication for

file id <0xCA843F..> to another random node

Random node <0x2EAA25..> forwarding MetaPublication for

file id <0xCA843F..> to another random node

Random node <0x507BA4..> submitting MetaPublication for

file id <0xCA843F..> to the meta root node

Meta root node <0xCAB00A..> saved meta data for file id <0xCA843F..>.

Meta data includes the following part ids: <0xA6C65C..>,

<0x0F2EEF..>, <0x0779B4..>, <0x2DDDA1..>, <0xB80C71..>,

<0xF99059..>, <0x2C718D..>, <0x3EE311..>, <0xC70488..>,

<0xC463AD..>, <0xC44C81..>, <0x20E916..>, <0xF18F54..>,

<0xAF047E..>, <0x6B6237..>, <0x95405D..>,

and the encryption key is: 59C05AF4EA8D4FD1

As the program output above shows, the meta data is correctly forwarded through a number
of randomly selected nodes before being submitted to the meta root node. As expected, the
meta data above comprises the 16 correct part ids and the symmetric encryption key used
by the publisher to encrypt the file.
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The next step is for the publisher to publish each of the erasure coded parts of the file. In this
test there are 16 parts in total, but only publication of part 8 will be illustrated and explained
here, since the output for all 16 parts differs only in part ids and node ids for nodes that will
handle the publication for the particular part.

Part publication is similar to meta publication in that data (in this case a PartPublication
message) is sent through a number of random forwarding nodes before one node chooses to
become part storer:

Publisher <0xADD471..> publishing part data for part id <0x3EE311..>

Random node <0x201F3E..> is forwarding a PartPublication message

Random node <0xA46283..> is forwarding a PartPublication message

Random node <0xB69331..> is forwarding a PartPublication message

Random node <0x7B801D..> is forwarding a PartPublication message

Random node <0x0B2E61..> is forwarding a PartPublication message

Random node <0x193353..> is forwarding a PartPublication message

Random node <0x5E92A8..> is forwarding a PartPublication message

Random node <0x5519DB..> is forwarding a PartPublication message

Random node <0xBFE8AA..> is forwarding a PartPublication message

Random node <0x1415C6..> is forwarding a PartPublication message

Random node <0x47A9A8..> is forwarding a PartPublication message

Random node <0xD53A06..> is forwarding a PartPublication message

Random node <0xAB893F..> is forwarding a PartPublication message

Random node <0xEB2D38..> is forwarding a PartPublication message

Random node <0x7F73E7..> is forwarding a PartPublication message

Random node <0xF9490B..> is forwarding a PartPublication message

Random node <0xD16D73..> is forwarding a PartPublication message

Random node <0xE32ED8..> is forwarding a PartPublication message

Random node <0x739916..> is forwarding a PartPublication message

Random node <0x8F67D9..> is forwarding a PartPublication message

Random node <0xB79A19..> is forwarding a PartPublication message

Random node <0x38C258..> is forwarding a PartPublication message

Random node <0xC62D34..> is forwarding a PartPublication message

Random node <0x3ACED1..> is forwarding a PartPublication message

Random node <0x3FB8EB..> is forwarding a PartPublication message

Random node <0xD8BB58..> is forwarding a PartPublication message

Random node <0xED8DB3..> is forwarding a PartPublication message

Random node <0x6BA435..> is forwarding a PartPublication message

Random node <0xF5924F..> is forwarding a PartPublication message

Random node <0x15ADF8..> is forwarding a PartPublication message

Node <0x86047A..> is PartStorer and saved all data for part id <0x3EE311..>

and selected the following nodes to be included in the part provider

list: <0x81E76B..>, <0x86EA09..>, <0x86047A..>, <0x8225EC..>, <0x861A00..>
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Notice that the part provider list has been shuffled so that the part storer’s own id is at a
random index in the list.

The part storer creates a message containing the part meta data, including the part provider
list, StoredPart. From this point on, the message is passed around the nodes in the part
provider list only until one part provider chooses to be part publisher:

Random ppl node <0x86EA09..> is forwarding StoredPart message <0x3EE311..>

Random ppl node <0x861A00..> is forwarding StoredPart message <0x3EE311..>

PartPublisher <0x8225EC..> saved information about part id : <0x3EE311..>

In this example, node <0x8225EC..> chooses to become Part Publisher, but it could have
been any of the nodes in the part provider list. Now the part publisher notifies all nodes
in the part provider list that they are part providers for part id <0x3EE311..> and finally
submits part information to the part root node:

PartProvider <0x81E76B..> saved information for part id <0x3EE311..>

PartProvider <0x861A00..> saved information for part id <0x3EE311..>

PartProvider <0x86EA09..> saved information for part id <0x3EE311..>

Node <0x3EBE92..> is part root node for part id <0x3EE311..>

This marks the end of a successful publication for one part. Illustrated next is the retrieval
process for file with file id <0xCA843F..> which part <0x3EE311..> is part of.

4.4.2 Retrieval Test

The first step in retrieval is for the client to contact the meta root node for the file id he wishes
to retrieve. In this example, node <0x061E91..> is client.

Client <0x061E91..> contacting meta root node requesting file id <0xCA843F..>

The meta root node <0xCAB00A..> receives this request and responds:

Meta root node <0xCAB00A..> received a request for file id <0xCA843F..>

from <0x061E91..>, sending part id list

The part id list contains the 16 part ids stored by the meta root node during publication, as
well as the symmetric encryption key used by the publisher to encrypt the file. (As noted
earlier, only plausibe deniability is implemented, and thus the meta root node knows the
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full encryption key.) When the client receives this list, it may start contacting part root nodes
to acquire part provider lists for the 16 parts, here only illustrated for part 8 (the rest of
the requests differ only in the ids of the nodes contacted). Both part root nodes and part
providers are contacted in parallel:

Client <0x061E91..> contacting part root node for part id <0x3EE311..>

The part root node <0x3EBE92..> receives this request and responds:

Part root node <0x3EBE92..> received request for part id <0x3EE311..>,

sending part provider list.

The client receives the part provider list for part id <0x3EE311..> from the part root node
and may now contact each of the five part providers individually and request the part from
them:

Client <0x061E91..> contacting part provider node <0x86047A..>

for part id <0x3EE311..>

Client <0x061E91..> contacting part provider node <0x81E76B..>

for part id <0x3EE311..>

Client <0x061E91..> contacting part provider node <0x861A00..>

for part id <0x3EE311..>

Client <0x061E91..> contacting part provider node <0x86EA09..>

for part id <0x3EE311..>

Client <0x061E91..> contacting part provider node <0x8225EC..>

for part id <0x3EE311..>

The part providers each receive the request and respond with a stream of bytes according to
the DC-network protocol:

Client <0x061E91..> first DCPart, data: 4989ED38B1C1D1815E7259C09F6CA

9422D81C5F23463B38CD43B756BB5323B996F1FA8BA826C4E8CF04DE2867067780214

3D1224B00CCFF1F0152C66B9753031D60CA9D1C18DE7704686FF532294DB14766C04A

F4EB10870AB505993D2C9F656D58A73FDD76DE8D9DBD52C8066899DD0240F

for pid: <0x3EE311..>, from node: <0x86047A..>

Client <0x061E91..> adding a DCPart, data: 958B4E2343D12C9C63351CFB79

F2CA6766063F3B3A62D387B92988AC31F7EB5FA5A0F8DC6A46892AFCDF1A4DEF15CC7

6068EC98263A0731E55B5CFA8402BA1E3A07E07A7478F12AAB4CDBDA0657D52362DEE

6ACC67576E2AFC5FBB79698C93B87ED0D2601FFD77F8204D6E75BCED43BB0884

for pid: <0x3EE311..>, from node: <0x81E76B..>

Client <0x061E91..> adding a DCPart, data: 68DDFC86A58E0EF38C39018A58



CHAPTER 4. IMPLEMENTATION AND TEST 72

68C483AAD5919F32F82EE9493914640B01FE862253D4F9A019FD606D65B922505565B

16E72099FF2C64632FCC76F9D6CDC085DE7B7643E71BA881E9D15478A59A9D195A983

36D4BF835F49275649A37E9E4868D331D51D4B3468C77F31BFA5A06D82F79EF6

for pid: <0x3EE311..>, from node: <0x861A00..>

Client <0x061E91..> adding a DCPart, data: C34F0235E82FB9509171AF7D01

7E36F2E13F0D11F27A556F44080BB8DCDA9270743376987383A1895F4F28F71F95945

ECECE97FEB9291F4A10032C5CC91D9E45418BD09CF2EFD45BBE456DA8F4FE1A118C20

FF61C12CAA74F85CD618F0A49237323D07242A12C6CD67370E71225BD5507BDC

for pid: <0x3EE311..>, from node: <0x86EA09..>

Client <0x061E91..> adding a DCPart, data: E7BDCA6641C649DC1D0D5AAA92

5A260AB17C85797D8F81E6915FDDF101590138E3677B144BA7205457300E2A42263FB

C13DA774CF17B1867D9A2999546DAFB615BAB3A01EAFCD8BD3D8F43B67D00F137EA25

D38176B711E06E0177B34C31D3630A7028B9A74BCD3B81CED11230C86E35DABB

for pid: <0x3EE311..>, from node: <0x8225EC..>

The client then XORs these five streams together to get the original part number 8:

XOR'ed data: 902D97CEFE7703623D02B1662DD2B75EB111E33EB30C9A6BF17C3FEA

5247BD087FB889137017BB1B6988673492947A27A1D5328B6938FDF090C6399A1A45F

CAB8BE520D5EFAB7122EC942B6797BEB3919404745721FE8287E6040AE2794E6CD240

265B1D0EFDFC1062502233689AE7F9131A for part id <0x3EE311..>

This XOR’ed data matches the data for part number 8, and the client has thus retrieved that
part successfully. Three more parts are required to reconstruct the file since m = 4, so the
process is repeated (in parallel) three more times:

XOR'ed data: E793B101FDC5B442550D5112DF8E2178148804C76EF2B12637494B79

D773CE5036D9E65E6E0670ABB4FD0CB9B74C0063930260EE0538E2F3F35D5D6EA3099

0979189B5E418539F2625DAF877C93E690A6D8EC6630A1993577FC5F4CDA02570C7C0

71C1423E18917775042D2794EAB87797AE for part id <0xC70488..>

XOR'ed data: FF48308896DE1F3A87890E1F8D3FC8C12FAD63C4F0CD13F3804D3182

8E13A643650779DB4DB5932DA392FB419AF5E0B3C9A06612AEDBEC5A32319F8BAA515

F5423FD87DA515C72F069710A14C35311942F58BF3FA8499E3885747128DE55F30C95

DFA16F2218BBCA9DB8D2A606EDE9BE8D93 for part id <0xC463AD..>

XOR'ed data: 5FFA40D72512837E04E5637D20A09D56DB814CC436B0EB7D5D349F2B

CBD4FED9AE70BFBC222A0C3A8E5BA18E8F36FC0D761BC0EB378D0C294CB96CE41006A

FF9EF53831C8247D06859F82E7238EFB8476A7B9A5EE750A49A04B205AC7ACBAB789D

F132B1C258E3D920DCB31C80D96E5275B4 for part id <0xC44C81..>
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These results concur with the part contents for parts 8, 9, 10, and 11 published the publisher,
so the client has successfully retrieved four erasure coded parts of the file and may now
reconstruct the encrypted file from these four parts and then decrypt it:

4 out of 16 parts received, decoding... success!

Decoded data: D3D599E2FD5C18FE754468220830F7372B5CC6A683E3121384E61F1

96F8D679A589967AA864F27E1EFB6E0ED7F18BCB3DF5D01DDAD8AEF083E7EC2627845

8E441EE72DA0DC6C841D63EEB2221493FA4CAE44D6E6D5133862E56992C7488C9BC76

9CDBC11AC8BBEE038F1D6BAA22EBCBC4B6CF400160C224CF447F6F405373FB2BE9E19

EF2E0F9244A3CE81CC7CA83E1FB173CE59C96E810B38C8F0FCAE8D6E121C46112C865

F2A796A25844659A4778628EF055C8741AF83017228CBCCEE6CB2E96EC06B0A976751

C45DEDE95E5581321E78A4BEC2D55FD69B480545872473F23CF9531B852E7F9D48915

2AD77E28340C05E0F1D5CB4790776C3EC29F29B46ADE6C69B6A0BD0B33F7398D3ED4C

E8D739B2675F4E4EDE2FBE9D7A502915B870FA8C6CABEA309157620277098F807007E

5A13D7DF13A2141694FE68F258F62E3C2E912A8DA76FDC0B5DE497C7BE09AC7F9979E

D2BA7414107FEC85C747D27D44A9EFB79EA0844732A1DD2D3A3F3E9C981829D606ED6

0252D39DE497C7BE09AC7F985355035EE4D239A1C63746BB5070C8777459F24B22D03

6A9AD8F08C62A031672BB5ADEA9E11F328B8C7DFA992104434EE17754E6A55B4DD2E1

07E350BC472D54B73EB614118BF10 (456 bytes)

This output matches the contents of the encrypted file published previously. Now the client
may decrypt this file with the encryption key retrieved from the meta root node to finish the
retrieval process:

Decoding completed successfully. Decrypting... success!

Encryption key: 59C05AF4EA8D4FD1

Decrypted data:

496E2074686520626567696E6E696E6720476F642063726561746564207468652

068656176656E20616E64207468652065617274682E20416E6420746865206561

7274682077617320776974686F757420666F726D2C20616E6420766F69643B206

16E64206461726B6E657373207761732075706F6E207468652066616365206F66

2074686520646565702E20416E642074686520537069726974206F6620476F642

06D6F7665642075706F6E207468652066616365206F6620746865207761746572

732E20416E6420476F6420736169642C204C6574207468657265206265206C696

768743A20616E6420746865726520776173206C696768742E20416E6420476F64

2073617720746865206C696768742C20746861742069742077617320676F6F643

A20616E6420476F64206469766964656420746865206C696768742066726F6D20

746865206461726B6E6573732E20416E6420476F642063616C6C6564207468652

06C69676874204461792C20616E6420746865206461726B6E6573732068652063

616C6C6564204E696768742E20416E6420746865206576656E696E6720616E642

0746865206D6F726E696E67207765726520746865206669727374206461792E

(length = 454 bytes)
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This output matches the contents of the original published part (encrypted and plaintext),
and thus the client has successfully retrieved the file with file id <0xae5ca9...>. One final
verification lies in the following output, the original string from Genesis which was pub-
lished:

String representation of the decrypted data:

In the beginning God created the heaven and the earth. And the

earth was without form, and void; and darkness was upon the face

of the deep. And the Spirit of God moved upon the face of the

waters. And God said, Let there be light: and there was light.

And God saw the light, that it was good: and God divided the

light from the darkness. And God called the light Day, and the

darkness he called Night. And the evening and the morning were

the first day.

4.5 Anonymity Test

As described in section 3.2, Accordion uses a Crowds-like technique for achieving sender
anonymity during publication and DC-networks for sender anonymity during retrieval.
During publication the publisher and the part storer seek sender anonymity and during
retrieval the part storer seeks sender anonymity..

As seen in section 4.4.1, the publisher sends the meta data through a number of forwarding
nodes to the meta root node. A forwarding node that receives the message cannot know
whether the node that from which it received the message was the sender or a forwarder
and thus the publisher achieves sender anonymity for the message containing the meta data
wrt. an adversary that is not able to perform the wiretapper attack.

Section 4.4.1 also shows that the same argument holds when the publisher sends the message
containing the part meta data and the actual data through a number of forwarding nodes to
the part storer (figure 3.3) and when the part storer sends the part meta data (part data minus
actual data) to the part publisher (also illustrated in figure 3.3).

Adjusting the probabilities for submitting or saving affects the average number of nodes
that a message will be forwarded through. This is illustrated in figure 4.2 where 10 publica-
tions have been performed for each of the probabilities 10%, 20%, . . . 100%. For probability
0%, a run of the program results in a Java stack overflow error after the message has been
forwarded a number of times. For probability 100%, the message is never forwarded (as ex-
pected). As expected, the average number of nodes through which a message is forwarded
decreases almost linearly with the increase in the probability of saving that message.

During a retrieval operation each of the part provider nodes sends data to the client. Accord-
ing to the DC-network protocol, all part provider nodes except the part storer send random
junk data using the previously set up seeds. The part storer also sends data that seems to be
random junk data to a passive adversary, but which in fact has the real data xor’ed into it.
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Figure 4.2: Number of forwarding nodes relative to the probability of saving.

The part storer in this example thus achieves sender anonymity among the four other nodes
in the part provider list wrt. any passive adversary.

If the same node publishes the same file twice, both the meta data and part meta data mes-
sages are likely to be sent through different nodes for each published file (depending on
network size) which verifies that each forwarding node chooses the next node at random.
Note that both the meta and part root nodes remain the same for both publications because
the network is static. Root nodes, however, do not seek anonymity and their identity can
(must) thus be able to be found determenistically (via Pastry).

4.6 Functionality Test

This test aims to convince the reader that a file can be succesfully retrieved in Accordion,
adjusting two different parameters: the network size N and the size of the DC-network (part
provider list) k.

N = 0 does not make sense because nothing can be stored in such a network. N = 1 and
N = 2 do not make sense because no anonymity can be achieved in such networks. N = 3
is thus considered the minimal network. As described in section 3.2, the choice of value for
k involves a tradeoff between the degree of anonymity that the part storer can achieve and
the efficiency of the network due to the k-fold increase in transferred data. However, k ≤ N
must hold.

In theory, k may be as large as N − 1, but in the current implementation, 2 5 k u 10 because
the k nodes the part storer chooses for the part providers are selected from nodes in the part
storer’s local routing table. In a simulated network with N = 1000 there are typically no
more than 10 nodes in a node’s routing table, and therefore this value is a practical limitation
to the current implementation.

One way to overcome this limitation would be for the part storer to route “ping” messages
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to randomly generated ids and receive replies from the actual nodes responsible for the
generated ids. However, this solution would break the part storer’s anonymity because the
nodes receiving “ping” messages would know that the source of such a message would be a
part storer. To solve this problem, the ping messages could be routed through a Crowds-like
path such it would take a wiretapper attack to break the part storer’s anonymity.

However, with respect to both efficiency and degree of anonymity, a value of k of around 10
seems acceptable.

4.6.1 Network Configurations

Two interesting network configurations have been identified: a minimal network and DC-
network and a “typical” network and DC-network. In the first case, N = 3 and k = 2, and in
the second case we choose N = 1000 and k = 5.

The minimal configuration is interesting in that it tests whether a node is able to handle
multiple roles (and multiple roles for multiple parts), e.g., part storer and part root node
(this is bound to happen when e.g. 16 parts are published in a network with only 3 nodes).
The typical configuration is interesting in that it tests how often, or rather rarely, plays more
than one role.

Minimal Configuration

To test the capability of nodes handling multiple roles for multiple parts, the same file as in
section 4.4 is published in a minimal-configuration network. Part of the output observed is:

Meta root node <0xD69455..> saved meta data for file id CA843F9B9BC88

09CE76DAB3570F339402F330578. Meta data includes the following part ids:

<0x32F9EF..>, <0xCA3E06..>, <0x00F398..>, <0x33CA9C..>, <0x54EC45..>,

<0x48299B..>, <0xE1CE73..>, <0x739773..>, <0x68B593..>, <0x79EF22..>,

<0xD624E6..>, <0x137615..>, <0x924C82..>, <0x68DC07..>, <0xB30F2A..>,

<0xACD916..>, and the encryption key is: d1f623133d3747f3

(...)

Part storer <0xD69455..> saved data for part id <0x32F9EF..> and

selected the following nodes to be included in the part provider list:

<0xD69455..>, <0x40E845..>

(...)

Random node <0xD69455..> is forwarding a PartPublication message

(...)
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Node <0xD69455..> is part root node for part id <0xCA3E06..>

The output above shows that node <0xD69455..> is both meta root node, part storer, random
forwarder, and part root node for the same part, and thus that a single node is capable of
correctly handling several roles for the same part.

The output below shows that node <0xD69455..> is capable of simultaneously handling
multiple roles for multiple parts.

Part storer <0xD69455..> saved data for part id <0x00F398..> and

selected the following nodes to be included in the part provider list:

<0xD69455..>, <0x40E845..>

Node <0xD69455..> is part root node for part id <0x00F398..>

Incidentally, the PartPublisher is the same node as the PartStorer,

namely <0xD69455..>

Typical Configuration

To test how often a node plays multiple roles, the same file as in section 4.4 is published in a
typical-configuration network. Part of the output observed is:

Meta root node <0xCA71F0..> saved meta data for file id CA843F9B9BC88-

09CE76DAB3570F339402F330578. Meta data includes the following part ids:

<0xBF18C1..>, <0xD22DE6..>, <0x05B039..>, <0x79D105..>, <0x258CE6..>,

<0xA6D4CD..>, <0xAD8225..>, <0x48E3D8..>, <0x85853C..>, <0xB132B3..>,

<0xB9764F..>, <0xF05C55..>, <0x756D87..>, <0x697074..>, <0xFF4841..>,

<0x287BBF..>, and the encryption key is: 7593436eeba589f2

(...)

Part storer <0x1A8E4E..> saved data for part id <0xBF18C1..> and

selected the following nodes to be included in the part provider list:

<0x108C97..>, <0x1A8E4E..>, <0x1215B1..>, <0x13983E..>, <0x148B1F..>

(...)

Node <0xBF3796..> is part root node for part id <0xBF18C1..>

The output above shows that node <0xCA71F0..> is meta root node, node <0x1A8E4E..> is
part storer, and node <0xBF3796..> is part root node. Thus, in this single publication, no
single node has several roles in the publication of a single part.
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The graph in figure 4.3 shows that the average number of roles for each node in a network
of 1000 thousand nodes increases with the number of parts published, as expected. For each
number of parts published, 10 publications were performed and the number of roles played
by each node (excluding the role of random forwarder) was plotted. All publications and
retrievals were successful.

Figure 4.3: The number of roles played by each node increases with the number of published parts
when keeping network size fixed.

4.6.2 Dynamic Network

So far all tests have been performed in a static network. The following tests show Accor-
dion’s resistance to leaving nodes and implicitly tests if our use of the FEC library [Cha01]
works correctly. Tests where nodes join the network have not been performed.

For the typical network configuration with a network with N = 1000, k = 5, and EC param-
eters m = 4, n = 16, a successively larger number of random nodes are killed after a file has
been published and before it is retrieved, and it is then tested if it is still possible to retrieve
the file using the parts still available from the nodes still alive.

In some runs of the publication and retrieval tests where random nodes are killed before
retrieval, one of the nodes killed may include the meta root node. Because no backup of root
nodes is performed, this is fatal to the retrieval process, but it says nothing about whether
our use of the FEC library is correct, nor does it verify the positive effect of erasure coding
on resilience.

Therefore, two different tests have been made. The first test is shown in figure 4.4. It illus-
trates 10 runs of the publication and retrieval processes for an increasing number of dead
nodes where the meta root node was not among the nodes killed, i.e., runs where the meta
root node was killed were not counted toward the result. The chart shows that for the 10 test
runs, even when as many as 30% of the nodes were randomly killed, the file was success-
fully retrieved every single time, and when 40% of the nodes were killed, the file was still
retrieved successfully 6 out of 10 times.
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The second test attempts to assess the effect on resilience of backing up meta root node data
(or rather, the effect of not doing it). The result of this test is shown in figure 4.5 shows 50
runs of publication and retrieval where the runs in which the meta root node was killed
counted towards the result. Compared to figure 4.4, the number of successful retrievals
drops significantly when 30% of the nodes are killed, and it therefore seems prudent to
implement backup of meta root node data.

Figure 4.4: Number of successful retrievals
when a number of random nodes are killed af-
ter publication (ignoring runs where the meta
root was one of the nodes killed). 10 publica-
tions were performed for each of the number
of killed nodes.

Figure 4.5: The same test as in figure 4.4, ex-
cept that runs where the meta root was one of
the nodes killed count towards the result.

One final output from a successful retrieval in one of the above test runs increases confidence
in our use of the FEC library:

Decoding part with repairIndex: 0

Decoding part with repairIndex: 2

Decoding part with repairIndex: 6

Decoding part with repairIndex: 10

The above means that the retrieved file has been reconstructed from erasure-coded parts #0,
#2, #6, and #10, i.e., four random parts out of the 16 parts originally published. Several other
combinations of parts have been observed in successful retrievals but are omitted here for
brevity.



Chapter 5

Conclusion

In this report we have described a number of different anonymizing techniques and ana-
lyzed their corresponding anonymity properties, showing different ways how these prop-
erties may be degraded by various attacks. None of the techniques are completely secure
in practice, but practical DC-networks seem to be the most secure choice (excluding the
overly inefficient broadcast technique), because if the network has been set up securely (ie.
without attacks), sender anonymity cannot be broken (assuming the outcome of the pseudo-
random number generators cannot be predicted) 1. A brief survey of existing peer-to-peer
anonymizing systems has also been presented to give the reader an overview of the status
anonymizing systems in peer-to-peer networks.

We have designed, implemented, and tested a novel design for an anonymous, low-latency,
peer-to-peer file storage application, Accordion. Publication in Accordion is based on a
Crowds-like technique and retrieval on DC-networks which have only been used in prac-
tice a very limited number of times, e.g. in [Mar99].

The simulated tests that have been performed increase confidence in the both anonymity
and functional aspects of the design. The current implementation does not support backup
of root nodes but still maintains a high degree of availability of files in the face of node
failures. Also, minimal, successful testing has been performed in a small, real network.

Accordion provides a unique combination of the following features:

• Efficiently implemented DC-networks using pseudo-random number generators.

• Erasure coding of files ensuring high availability even in spite of attacks.

• Strong deniability through a combination of erasure coding, symmetric encryption and
secret sharing. This makes it impossible to reconstruct the encryption key with less
than m parts of it but it is of course still possible to perform attacks on the encrypted
file itself. Assuming that encryption cannot be broken, no user (or adversary) is able

1This is not the same as unconditional anonymity, however, because an adversary could have intercepted the
exchanged bits or seeds and thus be able to break sender anonymity
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to tell what parts of other users’ files they are storing, thus providing them with strong
deniability of such knowledge.

Compared to related work such as Freenet and GNUnet, Accordion provides strong anonymity
properties through DC-networks, lookup guarantees through the use of structured routing
and low latency retrievals because no extra routing hops and no delays are introduced.

A number of attacks on Accordion are possible but these are hard to perform due to the na-
ture of peer-to-peer networks and will possibly only break anonymity for part of a file. If the
anonymity of nodes that store parts is broken these nodes will still have strong deniability
as defense.

This project has described different techniques to achieve anonymity in computer networks
and presented the design and implementation of an anonymous, low-latency, peer-to-peer
file storage system. However, in the area of anonymity both theoretical and practical chal-
lenges exist:

• Formal models for measuring the anonymity properties of an anonymizing system.
[Ser04] takes the first step in this direction but only analyses mix-networks.

• Comparing the anonymity of specific systems. GAP [BG03] presents an informal com-
parison of some systems.

• More robust implementations of the many interesting ideas that has come forward in
the area of anonymizing systems recently.

• More tests of implementations that focus more on e.g. performance and design of
intuitive user interfaces to get a larger user base, potentially providing both stronger
anonymity and e.g. more content in systems such as file storage systems.

We believe that the area of anonymity in computer networks is an area in continuous growth
that will see practical implementations in use by the public within a few years.
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Appendix A

Java Source Code for Accordion

A.1 AccNode.java

package accordion;

import accordion.messagetypes.AccordionMessage;

public interface AccNode
{

public void handle(AccordionMessage am);
}

A.2 AccordionApplication.java

package accordion;

import accordion.messagetypes.∗;
import accordion.tabletypes.∗;

import rice.pastry.Id;
import rice.pastry.NodeHandle;
import rice.pastry.NodeId;
import rice.pastry.PastryNode;

import rice.pastry. client .PastryAppl;
import rice.pastry. direct .NetworkSimulator;
import rice.pastry.messaging.Address;
import rice.pastry.messaging.Message;
import rice.pastry. leafset .LeafSet;
import rice.pastry.routing.RouteSet;
import rice.pastry.routing.RoutingTable;
import rice.pastry.routing.SendOptions;
import rice.pastry.security .Credentials;
import rice.pastry.security .PermissiveCredentials;

import javax.crypto.∗;
import javax.crypto. interfaces .∗;
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import javax.crypto.spec.∗;
import java.math.∗;
import java.security .∗;
import java.security .spec.∗;

import java. util .ArrayList;
import java. util .Hashtable;
import java. util .HashSet;

import java. util . Iterator ;
import java. util .Random;

import com.onionnetworks.fec.FECCode;
import com.onionnetworks.fec.FECCodeFactory;
import com.onionnetworks.util.Buffer;

class AccordionApplication extends PastryAppl
{

//−−−−−−−−−−−−−−−−−−−Pastry stuff−−−−−−−−−−−−−−−−−−−

public static Address appAddress = new AccordionAddress();
private static Credentials cred = new PermissiveCredentials();

private static class AccordionAddress implements Address
{

private int myCode = 0x1984abcd;
public int hashCode() { return myCode; }
public boolean equals(Object obj) { return (obj instanceof AccordionAddress); }
public String toString () { return "[AccordionAddress]"; }

}

private NetworkSimulator simulator;
private PastryNode pn;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

private Random prng;

/∗ Different Accordion node "roles". An Accordion node
∗ ( application) can potentially play all roles .
∗/

private RandNode rand; //Only one per physical node (make static in non−simulation)
private MetaRN metarn; //Only one per physical node (make static in non−simulation)
private PartRN partrn; //Only one per physical node (make static in non−simulation)
private PartProvider partprovider; //Only one per physical node (make static in non−simulation)
private Client client ; //Only one per physical node (make static in non−simulation)

public static KeyPair keypair; //Only one asymmetric keypair per node
//Made static for performance reasons under simulation.

/∗ k is the size of the ppl ∗/
public static int k = 5;

public static boolean isSimulation = false;
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public AccordionApplication(PastryNode pn) //Real network
{

super(pn);
initStuff (pn);
//pn.registerApp(this);

}

public AccordionApplication(PastryNode pn, NetworkSimulator sim) //Simulated
{

super(pn);
simulator = sim;
isSimulation = true ;
initStuff (pn);

}

private void initStuff (PastryNode pn)
{

this .pn = pn;
prng = new Random();
if ( keypair==null) keypair = generateAKP();

metarn = new MetaRN(this);
partrn = new PartRN(this);
partprovider = new PartProvider(this, pn);
rand = new RandNode(this, partprovider);
client = new Client(this);

//LeafSet ls = pn.getLeafSet() ;
//System.out.println("Node " + getNodeId() + ": " + ls ) ;

}

public void messageForAppl(Message message)
{

//System.out.print("Node " + getNodeId().toStringFull() + " received a message ");
AccordionMessage am = (AccordionMessage)message;

//−−−−−Publication−−−−−

if ( am instanceof MetaPublication)
{

MetaPublication mp = (MetaPublication)am;
NodeId nid = new NodeId(mp.id.toByteArray());

if ( isClosest (nid))
{

metarn.handle(mp);
//System.out.println("Node " + getNodeId() + " playing MetaRN [ " + mp.toString() + " ]") ;

}
else
{

rand.handle(mp);
//System.out.println("Node " + getNodeId() + " playing RandNode [ " + mp.toString() + " ]");

}
}

else if ( am instanceof PartPublication)
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{
PartPublication partpub = (PartPublication)am;
rand.handle(partpub);
//System.out.println("Node " + getNodeId() + " playing RandNode [ " + partpub.toString() + " ]") ;

}

else if ( am instanceof StoredPart)
{

StoredPart sp = (StoredPart)am;
rand.handle(sp);
//System.out.println("Node " + getNodeId() + " playing RandNode [ " + sp.toString() + " ]") ;

}

else if ( am instanceof PublishedPart)
{

PublishedPart pubpart = (PublishedPart)am;
partprovider.handle(pubpart);

}

else if ( am instanceof SubmittedPart)
{

SubmittedPart subpart = (SubmittedPart)am;
partrn.handle(subpart);

}

//−−−−−Retrieval−−−−−

// −−−−Client <−> MetaRN−−−−−

else if ( am instanceof MetaRNMessage)
{

MetaRNMessage mrm = (MetaRNMessage)am;

if (! mrm.isReply)
{

metarn.handle(mrm);
//System.out.println("Node " + getNodeId() + " playing MetaRN [ " + mrm.toString() + " ]");

}
else
{

client .handle(mrm);
//System.out.println("Node " + getNodeId() + " playing Client [ " + mrm.toString() + " ]") ;

}
}

//−−−−−Client <−> PartRN−−−−−

else if ( am instanceof PartRNMessage)
{

PartRNMessage prm = (PartRNMessage)am;

if (! prm.isReply)
{

partrn.handle(prm);
//System.out.println("Node " + getNodeId() + " playing PartRN [ " + prm.toString() + " ]") ;

}
else
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{
client .handle(prm);
//System.out.println("Node " + getNodeId() + " playing Client [ " + prm.toString() + " ]") ;

}
}

//−−−−−PartProvider −> Client (send the part status)−−−−−

else if ( am instanceof PartMessage)
{

PartMessage pm = (PartMessage)am;

if (! pm.isReply)
{

//System.out.println("Node " + getNodeId() + " is playing PartProvider and is receiving a request
from the client .") ;

partprovider.handle(pm);
}
else

client .handle(pm);

//System.out.println("Node " + getNodeId() + " playing Client [ " + pm.toString() + " ]") ;
}

}

//−−−−−Implementation of abstract methods from PastryAppl−−−−−

public Address getAddress() { return appAddress; }

public Credentials getCredentials() { return cred ; }

public boolean enrouteMessage(Message msg, Id key, NodeId nextHop, SendOptions opt)
{

//System.out.println("Enroute " + msg + " at " + getNodeId().toStringFull()) ;
//System.out.println("Message enroute at " + getNodeId().toStringFull()) ;
return true ;

}

// Use these to implement backup of root node−functionality
public void leafSetChange(NodeHandle nh, boolean wasAdded)
{

//System.out.print("In " + getNodeId() + "’s leaf set , " + " node " + nh.getNodeId() + " was ");
//if ( wasAdded) System.out.println("added"); else System.out.println("removed");

}

public void routeSetChange(NodeHandle nh, boolean wasAdded)
{

//System.out.print("In " + getNodeId() + "’s route set , " + " node " + nh.getNodeId() + " was ");
//if ( wasAdded) System.out.println("added"); else System.out.println("removed");

}

public void notifyReady()
{

//System.out.println("Node " + getNodeId() + " ready, waking up any clients");
//sendRndMsg(new Random());

}
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public void publish(String filename)
{

Publisher publisher = new Publisher(this, filename, pn);
publisher. start () ;

}

public void retrieve(String filename)
{

Id fileId = new Id(hash(filename.getBytes()));
client .go( fileId ) ;

}

public void forward(AccordionMessage am)
{

byte [] material = new byte[20];
prng.nextBytes(material);
Id rndid = new Id(material);

forward(rndid, am);
}

public void forward(Id key, AccordionMessage am)
{

routeMsg(key, am, cred, null);
if ( isSimulation) while(simulator.simulate());

}

public void submit(MetaPublication mp)
{

Id metarn = mp.id;
submit(metarn, mp);
//System.out.println("Node " + getNodeId() + " is submitting MP to MetaRN");

}

public void submit(Id rn, AccordionMessage am) //Used by PS when submitting to PartRNs
{

forward(rn, am);
}

//−−−−−Utilies methods−−−−−

public byte[] hash(byte[] bytes)
{

MessageDigest md = null;

try
{

md = MessageDigest.getInstance("SHA−1");
md.update(bytes);

}
catch(Exception e) { System.out.println(e) ; }

return md.digest();
}

/∗
∗ Find the (asymetric) set difference between two sets.
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∗/
public ArrayList difference(ArrayList ppl , ArrayList sl )
{

ArrayList list = new ArrayList();
HashSet pplset = new HashSet(ppl);
HashSet slset = new HashSet(sl);

pplset.removeAll(slset) ; //{ppl} \ { sl }
for ( Iterator i = pplset. iterator () ; i .hasNext();) list .add((Id)i .next() ) ; //Convert HashSet to

ArrayList
return list ;

}

public AccRow getRow(ArrayList table, Id key)
{

AccRow row = null;

for ( Iterator i = table . iterator () ; i .hasNext();)
{

row = (AccRow)i.next();
if ( row.id!=null && row.id.equals(key)) return row;

}

return null;
}

public void removeRow(ArrayList table, Id key)
{

try
{

AccRow row = null;

for ( int i =0; i<table. size ()−1; i++)
{

row = (AccRow)table.get(i);
if ( row.id!=null && row.id.equals(key))
{

table .remove(i);
break;

}
}

}
catch ( IndexOutOfBoundsException ie) { System.out.println(ie.toString()) ; }

}

public NodeId getRandomPPLNode(ArrayList ppl)
{

int rand = prng.nextInt(ppl.size () ) ;
//System.out.println("Rand: " + rand);
return (NodeId)ppl.get(rand);

}

//−−−−−Crypto stuff−−−−−

private KeyPair generateAKP()
{

KeyPairGenerator kpg = null;
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DHParameterSpec dhs = new DHParameterSpec(skip1024Modulus, skip1024Base);

try { kpg = KeyPairGenerator.getInstance("DH"); }
catch(NoSuchAlgorithmException ne) { System.out.println(ne.toString()); }

try { kpg. initialize (dhs) ; }
catch(InvalidAlgorithmParameterException ie) { System.out.println(ie.toString()) ; }

return kpg.generateKeyPair();
}

public byte[] calculateKey(byte[] puk)
{

KeyFactory kf = null;
PublicKey pk = null;
KeyAgreement ka = null;
byte [] sharedsecret = null;

try
{

kf = KeyFactory.getInstance("DH");
ka = KeyAgreement.getInstance("DH");
ka. init (keypair.getPrivate() ) ;
X509EncodedKeySpec xks = new X509EncodedKeySpec(puk);
pk = kf.generatePublic(xks);
DHParameterSpec dhs = ((DHPublicKey)pk).getParams();

ka.doPhase(pk, true);
sharedsecret = ka.generateSecret() ;

}
catch(Exception e) { System.out.println(e. toString () ) ; }

return sharedsecret;
}

// The 1024 bit Diffie−Hellman modulus values used by SKIP
private static final byte skip1024ModulusBytes[] = {

(byte)0xF4, (byte)0x88, (byte)0xFD, (byte)0x58,
(byte)0x4E, (byte)0x49, (byte)0xDB, (byte)0xCD,
(byte)0x20, (byte)0xB4, (byte)0x9D, (byte)0xE4,
(byte)0x91, (byte)0x07, (byte)0x36, (byte)0x6B,
(byte)0x33, (byte)0x6C, (byte)0x38, (byte)0x0D,
(byte)0x45, (byte)0x1D, (byte)0x0F, (byte)0x7C,
(byte)0x88, (byte)0xB3, (byte)0x1C, (byte)0x7C,
(byte)0x5B, (byte)0x2D, (byte)0x8E, (byte)0xF6,
(byte)0xF3, (byte)0xC9, (byte)0x23, (byte)0xC0,
(byte)0x43, (byte)0xF0, (byte)0xA5, (byte)0x5B,
(byte)0x18, (byte)0x8D, (byte)0x8E, (byte)0xBB,
(byte)0x55, (byte)0x8C, (byte)0xB8, (byte)0x5D,
(byte)0x38, (byte)0xD3, (byte)0x34, (byte)0xFD,
(byte)0x7C, (byte)0x17, (byte)0x57, (byte)0x43,
(byte)0xA3, (byte)0x1D, (byte)0x18, (byte)0x6C,
(byte)0xDE, (byte)0x33, (byte)0x21, (byte)0x2C,
(byte)0xB5, (byte)0x2A, (byte)0xFF, (byte)0x3C,
(byte)0xE1, (byte)0xB1, (byte)0x29, (byte)0x40,
(byte)0x18, (byte)0x11, (byte)0x8D, (byte)0x7C,
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(byte)0x84, (byte)0xA7, (byte)0x0A, (byte)0x72,
(byte)0xD6, (byte)0x86, (byte)0xC4, (byte)0x03,
(byte)0x19, (byte)0xC8, (byte)0x07, (byte)0x29,
(byte)0x7A, (byte)0xCA, (byte)0x95, (byte)0x0C,
(byte)0xD9, (byte)0x96, (byte)0x9F, (byte)0xAB,
(byte)0xD0, (byte)0x0A, (byte)0x50, (byte)0x9B,
(byte)0x02, (byte)0x46, (byte)0xD3, (byte)0x08,
(byte)0x3D, (byte)0x66, (byte)0xA4, (byte)0x5D,
(byte)0x41, (byte)0x9F, (byte)0x9C, (byte)0x7C,
(byte)0xBD, (byte)0x89, (byte)0x4B, (byte)0x22,
(byte)0x19, (byte)0x26, (byte)0xBA, (byte)0xAB,
(byte)0xA2, (byte)0x5E, (byte)0xC3, (byte)0x55,
(byte)0xE9, (byte)0x2F, (byte)0x78, (byte)0xC7

};

// The SKIP 1024 bit modulus
private static final BigInteger skip1024Modulus = new BigInteger(1, skip1024ModulusBytes);

// The base used with the SKIP 1024 bit modulus
private static final BigInteger skip1024Base = BigInteger.valueOf(2);

}

A.3 AccPart.java

package accordion;

import java.io . Serializable ;
import rice.pastry.Id;
import java. util .ArrayList;
import com.onionnetworks.util.Buffer;

public class AccPart implements Comparable, Serializable
{

public ArrayList dcparts = new ArrayList(); //List of DCPart objects
public Buffer data;
public int repairIndex;
public boolean xorDone = false;

public AccPart() { }
public String toString () { return "AccPart" ; }

public int compareTo(Object o)
{

AccPart ap = (AccPart) o;

if ( this . repairIndex < ap.repairIndex)
return −1;

else if ( this . repairIndex == ap.repairIndex)
return 0;

else
return 1;

}
}
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A.4 Client.java

package accordion;

import accordion.messagetypes.AccordionMessage;
import accordion.messagetypes.MetaRNMessage;
import accordion.messagetypes.PartRNMessage;
import accordion.messagetypes.PartMessage;

import accordion.tabletypes.MetaRNRow;
import accordion.tabletypes.PartRNRow;

import rice.pastry.Id;
import rice.pastry.NodeId;

import java. util .Collections ;
import java. util .ArrayList;
import java. util .Enumeration;
import java. util .Hashtable;
import java. util . Iterator ;

import javax.crypto.spec.SecretKeySpec;
import java.security .AlgorithmParameters;
import javax.crypto.Cipher;

import com.onionnetworks.fec.FECCode;
import com.onionnetworks.fec.FECCodeFactory;
import com.onionnetworks.util.Buffer;

class Client implements AccNode
{

private AccordionApplication app;
private Hashtable files = new Hashtable(); //List of ECFile objects
private Integer sessionId = new Integer(0); //Incremented for each file transfer

public Client(AccordionApplication aa)
{

app = aa;
}

public void go(Id fileId )
{

MetaRNMessage mrm = new MetaRNMessage(app.appAddress, app.getNodeId(), fileId);
System.out.println("Client " + app.getNodeId().toString() + " contacting meta root node requesting

file id " + fileId.toString());
app.forward(fileId , mrm);

int tmp = sessionId.intValue() ;
tmp++;
sessionId = new Integer(tmp);

}

public synchronized void handle(AccordionMessage am)
{

if ( am instanceof MetaRNMessage)
{

MetaRNMessage mrm = (MetaRNMessage)am;
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if ( mrm.metaRows.size()>0)
{

//System.out.println("MetaRN returned the following results: ");
//for ( Iterator i = mrm.metaRows.iterator(); i.hasNext();) System.out.println((MetaRNRow)i.next

());
//System.out.print("Please choose an entry : ") ;
MetaRNRow metarow = (MetaRNRow)mrm.metaRows.get(0);

//System.out.println("M = " + metarow.M);

ECFile currentfile = new ECFile(metarow);
files .put(sessionId , currentfile ) ;

//Contact the root node for each part
PartRNMessage prm = null;
Id partId = null;
//System.out.println("Contacting " + metarow.partIdList.size() + " PartRN(s).") ;

for ( Iterator j = metarow.partIdList.iterator () ; j .hasNext() ; )
{

partId = ( Id) j .next() ;
prm = new PartRNMessage(app.appAddress, app.getNodeId(), partId, sessionId.intValue());
app.forward(partId, prm);
System.out.println("Client "+app.getNodeId()+" contacting part root node for part id " +

partId.toString());
}

}
else System.out.println("− ERROR: Reply from the meta root node "+mrm.source+" was empty

.");
}

else if ( am instanceof PartRNMessage)
{

PartRNMessage prm = (PartRNMessage)am;

if ( prm.partRows.size()>0)
{

//System.out.println("One PartRN returned the following results: ");
//for ( Iterator i = prm.partRows.iterator(); i .hasNext();) System.out.println((PartRNRow)i.next());
//System.out.print("Please choose an entry : ") ;
PartRNRow partrow = (PartRNRow)prm.partRows.get(0);

NodeId nid;
PartMessage pm;

for ( Iterator i = partrow.partProviderList.iterator () ; i .hasNext();)
{

nid = (NodeId)i.next();
System.out.println("Client "+app.getNodeId()+" contacting part provider node " + nid + " for

part id " + partrow.id);
pm = new PartMessage(app.appAddress, app.getNodeId(), partrow.id, prm.sessionId);
app.forward(nid, pm);

}
}
else System.out.println("− ERROR: Reply from part root node"+prm.source+" for part id "+prm.

id+" was empty.");
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}

else if ( am instanceof PartMessage)
{

PartMessage pm = (PartMessage)am;

if ( pm.returnCode==0) //Only if a part provider knew about the part do we process it
{

ECFile currentfile = null;
AccPart accpart = null;

currentfile = ( ECFile) files .get(new Integer(pm.sessionId));

System.out.println("pm.id: " + pm.id + ", dcpart.id: " + pm.dcpart.id);

accpart = ( AccPart)currentfile .accparts.get(pm.dcpart.id);

if ( accpart==null)
{

System.out.println("Client "+app.getNodeId()+" first DCPart, data: " + HexDump.toHexShort(
pm.dcpart.data) + " for pid: " + pm.dcpart.id + ", from node: " + pm.source);

accpart = new AccPart();
accpart.dcparts.add(pm.dcpart);
accpart.repairIndex = pm.dcpart.repairIndex;
currentfile .accparts.put(pm.dcpart.id, accpart) ;

}
else
{

if ( accpart.dcparts.size ()<app.k)
{

System.out.println("Client "+app.getNodeId()+" adding DCPart #" + (accpart.dcparts.size()+1)
+ ", data:" + HexDump.toHexShort(pm.dcpart.data) + " for pid:" + pm.dcpart.id + ", from

node: " + pm.source);
accpart.dcparts.add(pm.dcpart);

}
}

if (( accpart.dcparts.size ()==app.k) && accpart.xorDone==false)
{

accpart.data = doXOR(accpart.dcparts);
accpart.xorDone = true;
currentfile .current_m++;
System.out.println("Current m: " + currentfile.current_m);

}

//At this point , we know that there are m AccParts ready for decoding, we just need to find out
which

if ( currentfile .current_m==currentfile.m)
{

ArrayList xoredparts = new ArrayList();

for ( Enumeration e = currentfile.accparts.elements() ; e.hasMoreElements();)
{

accpart = ( AccPart)e.nextElement();
if ( accpart.xorDone) xoredparts.add(accpart);

}
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if (! currentfile .notDecoded)
{

System.out.print("Client received "+currentfile.m+" parts, decoding...");
currentfile .data = decode(xoredparts, currentfile .m, currentfile .n);
System.out.print("\nSuccess! Now Decrypting...");
decrypt(currentfile .data , currentfile .enckey);
currentfile .notDecoded=true;
System.out.println(" success!") ;

}
}

}
else System.out.println("− ERROR: Node " + pm.source + " didn’t know about part with id " +

pm.dcpart.id);
}

}

private Buffer doXOR(ArrayList dcparts)
{

byte [] realdata = null;
DCPart dcpart = null;

if ( dcparts.size ()>0)
{

dcpart = (DCPart)dcparts.get(0); //All parts must have the same length!
realdata = new byte[dcpart.size];

Iterator j = null;

for ( int i =0; i<realdata.length ; i++)
{

for ( j = dcparts. iterator () ; j .hasNext();)
{

dcpart = (DCPart)j.next() ;
realdata[ i ] ^= dcpart.data[i ];

}
}

}

System.out.println("Client XOR’ing part provider byte streams for part id "+dcpart.id.toString()+"\
nResult: " + HexDump.toHex(realdata));

return new Buffer(realdata);
}

private byte [] decode(ArrayList xoredparts, int m, int n)
{

Buffer [] receiverBuffer = new Buffer[m];
int [] receiverIndex = new int[m];
Enumeration e = null;
AccPart onepart = (AccPart)xoredparts.get(0);
int i = 0;

int packetsize = (( DCPart)onepart.dcparts.get(0)).size ; //All parts must have the same length and
onepart.length = packetsize

byte [] received = new byte[m∗packetsize];
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Collections . sort (xoredparts);

for ( Iterator it = xoredparts. iterator () ; it .hasNext() ; )
{

onepart = (AccPart)it .next() ;
System.out.println("Decoding part with repairIndex: " + onepart.repairIndex);
System.arraycopy( onepart.data.getBytes() , 0, received , i∗packetsize , onepart.data.getBytes() . length ) ;
receiverIndex[i ] = onepart.repairIndex;
i++;

}

//Create Buffers for the encoded data
for ( i = 0; i < m; i++ )

receiverBuffer[ i ] = new Buffer( received, i∗packetsize , packetsize ) ;

FECCodeFactory factory = FECCodeFactory.getDefault();
FECCode fec = FECCodeFactory.getDefault().createFECCode(m,n);

//Finally we can decode
fec .decode(receiverBuffer, receiverIndex);
System.out.println("Decoded data: " + HexDump.toHex(received) + "(" +received.length + " bytes)");

return received;

}

private void decrypt(byte[] encryptedfile , SecretKeySpec enckey)
{

byte [] decryptedfile = null;

try
{

System.out.println("Encryption key: " + HexDump.toHex(enckey.getEncoded()));
Cipher bfc;
bfc = Cipher.getInstance("DES/ECB/PKCS5Padding"); //Blowfish/CBC/PKCS5Padding
bfc . init (Cipher.DECRYPT_MODE, enckey);

decryptedfile = bfc .doFinal(encryptedfile) ;
System.out.println("Decrypted data: " + HexDump.toHex(decryptedfile) + ", length: " + decryptedfile.

length);
System.out.println("String representation of the decrypted data: "+new String(decryptedfile));

}
catch(Exception e) { System.out.println(e) ; }

}

}

class ECFile
{

public SecretKeySpec enckey;
public int n , m;
public int current_m = 0;
public boolean notDecoded = false;
public Hashtable accparts = new Hashtable(); //List of AccPart objects

public byte[] data;
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public ECFile(MetaRNRow mrr)
{

enckey = mrr.enckey;
n = mrr.n;
m = mrr.m;

}
}

A.5 DCPart.java

package accordion;

import java.io . Serializable ;
import rice.pastry.Id;

public class DCPart implements Serializable
{

public Id id;
public byte[] data;
public int size ;
public int repairIndex;

public DCPart(int size)
{

this . size = size ;
data = new byte[size];

}

public String toString () { return "DCPart"; }

public String toStringFull ()
{

String s = "[DCPart] id: " + id + ", size : " + size + " and data: ";

if ( data==null) s += "null" ;
else s+= HexDump.toHex(data).substring(0,10) + "...";

return s ;
}

}

A.6 MainApp.java

package accordion;

import rice.pastry.NodeHandle;
import rice.pastry.PastryNode;
import rice.pastry.PastrySeed;
import rice.pastry.PastryNodeFactory;
import rice.pastry.dist .DistPastryNodeFactory;
import rice.pastry. direct .DirectPastryNodeFactory;
import rice.pastry. direct .NetworkSimulator;
import rice.pastry. direct .EuclideanNetwork;
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import rice.pastry.standard.IPNodeIdFactory;
import rice.pastry.standard.RandomNodeIdFactory;

import java.io .IOException;
import java.io .BufferedReader;
import java.io .InputStreamReader;

import java.net.InetSocketAddress;
import java.net.InetAddress;
import java.net.UnknownHostException;

import java. util .Date;
import java. util . Iterator ;
import java. util .NoSuchElementException;
import java. util .Random;
import java. util .TreeMap;
import java. util .Vector;

public class MainApp
{

private static boolean isSimulation = false;
private static boolean isBootstrap = true;

//Simulation
private static NetworkSimulator simulator;

//Real network
private static int PROTOCOL = DistPastryNodeFactory.PROTOCOL_WIRE;
private static String BSHOST = null;
private static int BSPORT = 5009;

//Common
private static Vector pastryNodes;
private static Vector accordionApps;
private static TreeMap pastryNodesSorted;
private static PastryNodeFactory factory;
private static Random rng;

public MainApp()
{

pastryNodes = new Vector();
accordionApps = new Vector();
pastryNodesSorted = new TreeMap();
rng = new Random(PastrySeed.getSeed());

if ( isSimulation)
{

simulator = new EuclideanNetwork();
factory = new DirectPastryNodeFactory(new RandomNodeIdFactory(), simulator);

}
else
{

factory = DistPastryNodeFactory.getFactory(new IPNodeIdFactory(BSPORT), PROTOCOL, BSPORT);
}

}

//−−−−−Real network−−−−−
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/∗∗
∗ Gets a handle to a bootstrap node. First we try localhost , to see
∗ whether a previous virtual node has already bound itself there.
∗ Then we try nattempts times on BSHOST:BSPORT. Then we fail.
∗
∗ @param firstNode true of the first virtual node is being bootstrapped on this host
∗ @return handle to bootstrap node, or null .
∗/

protected NodeHandle getRealBootstrap()
{

InetSocketAddress addr = null;

if (! isBootstrap && BSHOST!=null && BSHOST!="\n")
{

System.out.println("BSHOST: " + BSHOST);
addr = new InetSocketAddress(BSHOST, BSPORT);

}
else
{

try
{

addr = new InetSocketAddress(InetAddress.getLocalHost().getHostName(), BSPORT);
}
catch(UnknownHostException e)
{

System.out.println(e) ;
}

}

NodeHandle bshandle = ((DistPastryNodeFactory)factory).getNodeHandle(addr);
return bshandle;

}

/∗∗
∗ Create a Pastry node and add it to pastryNodes. Also create a client
∗ application for this node, so that when this node comes up ( when
∗ pn.isReady() is true) , this application’s notifyReady() method
∗ is called , and it can do any interesting stuff it wants.
∗/

public PastryNode makeRealNode()
{

NodeHandle bootstrap = getRealBootstrap();
PastryNode pn = factory.newNode(bootstrap); // internally initiateJoins
pastryNodes.addElement(pn);

AccordionApplication app = new AccordionApplication(pn);
accordionApps.addElement(app);
return pn;

}

//−−−−−Simulation−−−−−

private NodeHandle getSimulationBootstrap(boolean firstNode)
{

NodeHandle bootstrap = null;
try
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{
PastryNode lastnode = (PastryNode) pastryNodes.lastElement();
bootstrap = lastnode.getLocalHandle();

}
catch (NoSuchElementException e) {}
return bootstrap;

}

private void makeSimulatedNode()
{

NodeHandle bootstrap = getSimulationBootstrap(pastryNodes.size() == 0);
PastryNode pn = factory.newNode(bootstrap);
pastryNodes.addElement(pn);

AccordionApplication app = new AccordionApplication(pn, simulator);
accordionApps.addElement(app);
if ( bootstrap != null) while(simulate());

}

private boolean simulate()
{

boolean res = simulator.simulate() ;
return res ;

}

private void killNodes(int num)
{

PastryNode pn = null;

for ( int i =0; i<num; i++)
{

int n = rng.nextInt(pastryNodes.size());

//Don’t kill the client
if ( n!=1)
{

pn = (PastryNode)pastryNodes.get(n);
pastryNodes.remove(n);
accordionApps.remove(n);
killNode(pn);
System.out.println("Killed " + pn.getNodeId());

}
}

}

private void killNode(PastryNode pn)
{

NetworkSimulator enet = (NetworkSimulator)simulator;
enet.setAlive(pn.getNodeId(), false) ;

}

//−−−−−

private void testPublication(int i )
{

AccordionApplication app = (AccordionApplication)accordionApps.elementAt(i);
app.publish("The Meaning of Life.txt");
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}

private void testRetrieval (int i )
{

AccordionApplication app = (AccordionApplication)accordionApps.elementAt(i);
app.retrieve("The Meaning of Life.txt");

}

//−−−−−

private static void parse(String args [])
{

for ( int i = 0; i < args.length ; i++)
{

if ( args[ i ]. equals("−−help"))
{

System.out.println("Usage: MainApp [−simulation yes/no] [−bootstrap ip]");
System.out.println("") ;
System.exit(1) ;

}
}

for ( int i = 0; i < args.length ; i++)
{

if ( args[ i ]. equals("−simulation") && i+1 < args.length)
{

if ( args[ i+1]!=null && args[i+1].equals("yes"))
{

isSimulation = true ;
break;

}
}

}

for ( int i = 0; i < args.length ; i++)
{

if ( args[ i ]. equals("−bootstrap") && i+1 < args.length)
{

BSHOST = args[i+1];
if ( BSHOST!=null && BSHOST!="") isBootstrap = false;
break;

}
}

}

//−−−−−

public static void main(String args[])
{

parse(args) ;
MainApp driver = new MainApp();

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

if ( driver.isSimulation)
{
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int nodes = 1000;
double killfactor = 0.1;

String strnodes = null;

System.err.print("Number of nodes to create (default " + nodes + "): ");
try { strnodes = br.readLine() ; } catch(IOException ie) { System.out.println(ie . toString () ) ; }
if ( strnodes!=null && !strnodes.equals("")) nodes = Integer.parseInt(strnodes);

for ( int i =0; i<nodes; i++) driver.makeSimulatedNode();

System.err.println("\nCreated " + nodes + " nodes. Press ENTER to test publication and retrieval
.\n");

try { System.in.read() ; } catch(IOException ie) { System.out.println(ie . toString () ) ; }

driver. testPublication (0) ;
System.err.println("Press ENTER to kill nodes");
try { System.in.read() ; } catch(IOException ie) { System.out.println(ie . toString () ) ; }

driver.killNodes((int) (nodes∗killfactor) ) ;
System.err.println("Press ENTER to start a test retrieval");

try { System.in.read() ; } catch(IOException ie) { System.out.println(ie . toString () ) ; }
driver. testRetrieval (1) ;
System.err.println("Press ENTER to exit program");

try { System.in.read() ; } catch(IOException ie) { System.out.println(ie . toString () ) ; }
}
else
{

//PastryNode pn = driver.makeRealNode();
driver.makeRealNode();

if (! isBootstrap)
{

System.out.println("Press ENTER to start a test publication.");
try { System.in.read() ; } catch(IOException ie) { System.out.println(ie . toString () ) ; }
driver. testPublication (0) ;
System.out.println("Press ENTER to start a test retrieval.");
try { System.in.read() ; } catch(IOException ie) { System.out.println(ie . toString () ) ; }
driver. testRetrieval (0) ;

}

}
}

}

A.7 MetaRN.java

package accordion;

import accordion.messagetypes.AccordionMessage;
import accordion.messagetypes.MetaPublication;
import accordion.messagetypes.MetaRNMessage;
import accordion.tabletypes.MetaRNRow;
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import rice.pastry.Id;
import rice.pastry.NodeId;

import java. util .ArrayList;
import java. util . Iterator ;

import java.security .AlgorithmParameters;

class MetaRN implements AccNode
{

private AccordionApplication app;
private ArrayList publishMetaTable;

public MetaRN(AccordionApplication aa)
{

app = aa;
publishMetaTable = new ArrayList();

}

public void handle(AccordionMessage am)
{

if ( am instanceof MetaPublication)
{

MetaPublication mp = (MetaPublication)am;
save(mp);

}
else if ( am instanceof MetaRNMessage)
{

MetaRNMessage mrm = (MetaRNMessage)am;
System.out.println("Meta root node "+app.getNodeId()+" received a request for file id "+mrm.id

+" from "+mrm.source.toString()+", sending part id list");
mrm.metaRows = get(mrm.id);
mrm.isReply = true;
NodeId client = mrm.source;
mrm.source = app.getNodeId();
app.forward(client , mrm);

}
}

private void save(MetaPublication pm)
{

MetaRNRow row = new MetaRNRow();
row.id = pm.id;
row.partIdList = pm.partIdList;
row.enckey = pm.enckey;
row.n = pm.n;
row.m = pm.m;
publishMetaTable.add(row);
System.out.println("Meta root node " + app.getNodeId() + " saved meta data for file id " + row.id.

toStringFull()+". "+pm.toStringFull());
}

private ArrayList get(Id fid )
{

ArrayList resultrows = new ArrayList();
MetaRNRow row = null;
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//System.out.println("pmt size : " + publishMetaTable.size());
//System.out.println(app.getNodeId() + " is looking for mp");

for ( Iterator i = publishMetaTable.iterator() ; i .hasNext();)
{

row = (MetaRNRow)i.next();
//System.out.println("MRR at MetaRN: " + row);
if ( row.id.equals(fid) ) resultrows.add(row);

//System.out.println("MetaRN, M: " + row.M);
}

return resultrows;
}

}

A.8 PartProvider.java

package accordion;

import rice.pastry.NodeHandle;
import rice.pastry.Id;
import rice.pastry.NodeId;
import rice.pastry.PastryNode;
import rice.pastry.routing.RouteSet;
import rice.pastry.routing.RoutingTable;
import rice.pastry.standard.RandomNodeIdFactory;

import accordion.messagetypes.AccordionMessage;
import accordion.messagetypes.PartPublication;
import accordion.messagetypes.StoredPart;
import accordion.messagetypes.PublishedPart;
import accordion.messagetypes.SubmittedPart;
import accordion.messagetypes.PartMessage;

import accordion.tabletypes.PartProviderRow;
import accordion.tabletypes.SeedRow;

import java. util .ArrayList;
import java. util .HashSet;
import java. util . Iterator ;
import java. util .Random;

public class PartProvider implements AccNode
{

private AccordionApplication app;
private PastryNode ownnode;

private ArrayList partProviderTable;
private Random prng = new Random();

public PartProvider(AccordionApplication aa, PastryNode pn)
{

app = aa;
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ownnode = pn;
partProviderTable = new ArrayList();

}

/∗
∗ "Handle" the incoming AccordionMessage.
∗/

public void handle(AccordionMessage am)
{

if ( am instanceof PartPublication)
{

save(am);
}
else if ( am instanceof StoredPart)
{

save(am);
}
else if ( am instanceof PublishedPart)
{

save(am);
}
else if ( am instanceof PartMessage)
{

PartMessage pm = (PartMessage)am;
//System.out.println("Node " + app.getNodeId() + " is calling sendPart() for pid : " + pm.id);
sendPart(pm);

}
}

/∗
∗ Save the incoming message by performing the actions appropriate
∗ for the role the current node is currently playing.
∗/

private void save(AccordionMessage am)
{

//Performed by PS
if ( am instanceof PartPublication)
{

PartPublication partpub = (PartPublication)am;

//1 Save the part
PartProviderRow rowtoadd = new PartProviderRow(partpub.dcpart.size);
rowtoadd.id = partpub.dcpart.id;
rowtoadd.dcpart.id = partpub.dcpart.id;
rowtoadd.dcpart.size = partpub.dcpart.size;
rowtoadd.dcpart.data = partpub.dcpart.data;
rowtoadd.dcpart.repairIndex = partpub.dcpart.repairIndex;
partProviderTable.add(rowtoadd);

ArrayList partProviderList = generatePPL();

System.out.println("Part storer " + app.getNodeId() + " saved data for part id " + rowtoadd.id + "
and selected the following nodes to be included in the part provider list: ");

for ( Iterator ppli = partProviderList. iterator () ; ppli .hasNext();) System.out.print((NodeId)ppli.next
() + ", " ) ;
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//2 Build a set of node pairs from the PPL
HashSet uniquepairs = new HashSet();
Seed seed = null;
NodeId x = null, y = null;

for ( int i =0; i<partProviderList.size () ; i++)
{

x = ( NodeId)partProviderList.get(i);

for ( int j =0; j<partProviderList.size () ; j++)
{

y = ( NodeId)partProviderList.get(j);
seed = new Seed(x,y);
if (! x.equals(y) && !contains(uniquepairs, seed)) uniquepairs.add(seed);

}
}

//3 Generate seeds by assigning a random seed to each pair
ArrayList seedlist = new ArrayList();

for ( Iterator i = uniquepairs.iterator () ; i .hasNext();)
{

seed = (Seed)i.next() ;
seed.value = Math.abs(prng.nextLong());
seedlist .add(seed);
//System.out.println(seed.toStringFull()) ;

}

//4 Generate the PS’ local seed list
rowtoadd.seedList = getSeedList(seedlist , app.getNodeId());

//5 Send a message containing part meta data and seedlist to a random PPL node
partpub.dcpart.data = null;
StoredPart sp = new StoredPart(app.appAddress, null, partpub.dcpart, partProviderList, seedlist);

NodeId pplnode = app.getRandomPPLNode(partProviderList);
app.forward(pplnode, sp);

}

//∗∗∗TO−DO: CHECK THAT THE LIST IS AT LEAST k LONG BEFORE SAVING!
//∗∗∗TO−DO: CHECK THAT THE CURRENT NODE IS IN THE PPL BEFORE SAVING!

//Performed by PartPublisher
else if ( am instanceof StoredPart)
{

StoredPart sp = (StoredPart)am;
PartProviderRow rowtoadd = (PartProviderRow)app.getRow(partProviderTable, sp.dcpart.id);

ArrayList localSeedList = null;

if ( rowtoadd==null) //If PS itself becomes PartPublisher it should not save the part again
{

//1 Save the part meta data
rowtoadd = new PartProviderRow(sp.dcpart.size);
localSeedList = getSeedList(sp.seedList , app.getNodeId());
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rowtoadd.id = sp.dcpart.id;
rowtoadd.dcpart.id = sp.dcpart.id;
rowtoadd.dcpart.size = sp.dcpart.size ;
rowtoadd.dcpart.data = null;
rowtoadd.dcpart.repairIndex = sp.dcpart.repairIndex;
rowtoadd.seedList = localSeedList;
partProviderTable.add(rowtoadd);
//System.out.println("Node " + app.getNodeId() + " is PartPublisher. It saved " + rowtoadd.

toStringFull());
System.out.println("PartPublisher " + app.getNodeId() + " saved information about part id : " +

rowtoadd.id.toString());
}
else

System.out.println("Incidentally, the PartPublisher is the same node as the PartStorer, namely
"+app.getNodeId()+"\n");

//2 Send the part meta data to the rest of the nodes in the PPL
PublishedPart pubpart;
NodeId pplnode = null;

for ( Iterator i = sp.partProviderList. iterator () ; i .hasNext();)
{

pplnode = (NodeId)i.next();
if (! app.getNodeId().equals(pplnode))
{

localSeedList = getSeedList(sp.seedList , pplnode);
pubpart = new PublishedPart(app.appAddress, null, sp.dcpart, localSeedList);
app.forward(pplnode, pubpart);
//System.out.println("PartPublisher \t −> " + app.getNodeId() + " sent a PublishedPart to node " +

pplnode);
}

}

//3 Submit the part meta data to the PartRN
SubmittedPart subpart = new SubmittedPart(app.appAddress, null, sp.dcpart.id, sp.partProviderList);
app.submit(sp.dcpart.id, subpart);
//System.out.println("Node " + app.getNodeId() + " is submitting a part to PartRN, the node with id

closest to : " + sp.dcpart.id) ;

}

//Performed by {PPL} \ {PartPublisher}
else if ( am instanceof PublishedPart)
{

PublishedPart pubpart = (PublishedPart)am;
//System.out.println("PartProvider \t −> " + app.getNodeId() + " looking for pid : " + pubpart.dcpart.

id);
PartProviderRow rowtoadd = (PartProviderRow)app.getRow(partProviderTable, pubpart.dcpart.id);

if ( rowtoadd==null) //PS has already saved the part and does therefore not save the part again
{

rowtoadd = new PartProviderRow(pubpart.dcpart.size);

rowtoadd.id = pubpart.dcpart.id;
rowtoadd.dcpart.id = pubpart.dcpart.id;
rowtoadd.dcpart.size = pubpart.dcpart.size;
rowtoadd.dcpart.data = null;
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rowtoadd.dcpart.repairIndex = pubpart.dcpart.repairIndex;
rowtoadd.seedList = pubpart.seedList;
partProviderTable.add(rowtoadd);
//System.out.println("PPL Node " + app.getNodeId() + " is a part provider. It saved " + rowtoadd.

toStringFull());
System.out.println("PartProvider "+app.getNodeId()+" saved information for part id " +

rowtoadd.id.toString());
}

}
}

/∗
∗ Send the local data for the part with id = pid according to the DC−network protocol to node = client.
∗/

private void sendPart(PartMessage pm)
{

Id pid = pm.id;
NodeId client = pm.source;

//System.out.println("PS/PP \t\t −> " + app.getNodeId() + " looking for pid: " + pid);
PartProviderRow row = (PartProviderRow)app.getRow(partProviderTable, pid);
//System.out.println("∗∗∗∗∗pid: " + pid + " = row.dcpart.id : " + row.dcpart.id + "?") ;

if ( row==null)
pm.returnCode = −1;

else
{

Random prng = null;
SeedRow sr = null;
long seed;
byte [] coin;
ArrayList coins = new ArrayList();

for ( Iterator i = row.seedList. iterator () ; i .hasNext();)
{

sr = ( SeedRow)i.next();
seed = sr .value;
prng = new Random(seed);
coin = new byte[row.dcpart.size];
prng.nextBytes(coin);
coins.add(coin);

System.out.println("Seed element " + sr.id + " at node " + app.getNodeId());
}

pm.dcpart = new DCPart(row.dcpart.size);
pm.dcpart.id = row.dcpart.id;
pm.dcpart.repairIndex = row.dcpart.repairIndex;

boolean done = false;

Iterator j = null;
for ( int i =0; i<row.dcpart.size; i++)
{

for ( j = coins. iterator () ; j .hasNext();)
{
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coin = ( byte[]) j .next() ;
pm.dcpart.data[i] ^= (byte)coin[i ];

}

if ( row.dcpart.data!=null) //Done by PS
{

if (! done)
{

done = true;
System.out.println("PS " + app.getNodeId() + " is storing " + HexDump.toHex(row.dcpart.data)

);
}
pm.dcpart.data[i] ^= row.dcpart.data[i ];

}
//else
//System.out.println("Part Provider " + app.getNodeId() + " is storing " + HexDump.toHex(row.

dcpart.data));
}

pm.source = app.getNodeId();
pm.isReply = true;
app.forward(client , pm);

}
}

/∗
∗ Generate a part provider list containing k elements. Currently
∗ do this from random entries in the current node’s routing table .
∗/

private ArrayList generatePPL()
{

HashSet hs = new HashSet(); //Use a set to ensure unique nodes
RoutingTable rt = null;
RouteSet[] rtrow = null;
RouteSet rs = null;
NodeHandle nh = null;
int addedNodes = 0;

hs.add(app.getNodeId());

rt = ownnode.getRoutingTable();
//System.out.println(rt);

while (addedNodes<app.k−1)
{

//System.out.println("Looking for PPL nodes...");

for ( int i =0; i<rt .numRows(); i++)
{

if ( addedNodes>=app.k−1) break;
rtrow = rt .getRow(i);

for ( int j =0; j<rtrow.length; j++)
{

if ( rtrow[j ]!=null)
{

if ( Math.random() > 0.5 && addedNodes<app.k−1)
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{
nh = rtrow[j ]. get(0) ;
if ( hs.add(nh.getNodeId())) addedNodes++;

}
}

}
}

}

NodeId node = null;
ArrayList ppl = new ArrayList();

for ( Iterator i = hs. iterator () ; i .hasNext();)
{

node = (NodeId)i.next();
ppl.add(node);
//System.out.println("PS −> " + app.getNodeId() + " added a ppl node with id " + node);

}

shuffleList (ppl);
//System.out.println("Node " + app.getNodeId() + " generated a PPL with " + ppl.size() + " nodes");
return ppl;

}

/∗
∗ Shuffles the PPL so PS’ position in the list cannot be determined.
∗/

private void shuffleList (ArrayList ppl)
{

int count = (int) (Math.random()∗50);
int r1 , r2 ;
NodeId tmp = null;

for ( int i =0; i<count; i++)
{

r1 = ( int) (Math.random()∗(ppl.size()−1));
r2 = ( int) (Math.random()∗(ppl.size()−1));

tmp = (NodeId)ppl.get(r1);
ppl.set (r1 , ( NodeId)ppl.get(r2));
ppl.set (r2 , tmp);

}
}

/∗
∗ Gets a " local " seed list for a PPL node from the "global" seed
∗ list generated by PS
∗/

private ArrayList getSeedList(ArrayList seedlist , NodeId own)
{

Seed seed = null;
SeedRow sr = null;
ArrayList localseedlist = new ArrayList();
boolean add = false;
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for ( Iterator i = seedlist . iterator () ; i .hasNext();)
{

add = false ;
seed = (Seed)i.next() ;

if ( seed.x.equals(own))
{

sr = new SeedRow(seed.y);
sr .value = seed.value;
add = true;

}

if ( seed.y.equals(own))
{

sr = new SeedRow(seed.x);
sr .value = seed.value;
add = true;

}

if ( add) localseedlist .add(sr);
}

return localseedlist ;
}

private boolean contains(HashSet seedlist, Seed seed)
{

boolean result = false ;
Seed current = null;

for ( Iterator i = seedlist . iterator () ; i .hasNext();)
{

current = ( Seed)i.next() ;
result = ( current.x.equals(seed.x) && current.y.equals(seed.y) || (current.x.equals(seed.y) && current.

y.equals(seed.x)) ) ;
if ( result ) break;

}

return result ;
}

}

A.9 PartRN.java

package accordion;

import accordion.messagetypes.AccordionMessage;
import accordion.messagetypes.SubmittedPart;
import accordion.messagetypes.PartRNMessage;

import accordion.tabletypes.AccRow;
import accordion.tabletypes.PartRNRow;

import rice.pastry.Id;
import rice.pastry.NodeId;
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import java. util .ArrayList;
import java. util . Iterator ;

class PartRN implements AccNode
{

private AccordionApplication app;
private ArrayList publishPartTable;

public PartRN(AccordionApplication aa)
{

app = aa;
publishPartTable = new ArrayList();

}

public void handle(AccordionMessage am)
{

if ( am instanceof SubmittedPart)
{

SubmittedPart subpart = (SubmittedPart)am;
save(subpart);

}
else if ( am instanceof PartRNMessage)
{

PartRNMessage prm = (PartRNMessage)am;
System.out.println("Part root node "+app.getNodeId()+" received request for part id "+prm.id+",

sending part provider list.");
prm.partRows = get(prm.id);
prm.isReply = true;

NodeId client = prm.source;
prm.source = app.getNodeId();

app.forward(client , prm);
}

}

private void save(SubmittedPart subpart)
{

PartRNRow row = new PartRNRow();
row.id = subpart.id;
row.partProviderList = subpart.partProviderList;
publishPartTable.add(row);
System.out.println("Node " + app.getNodeId() + " is part root node for part id " + row.id.toString());

}

private ArrayList get(Id partId)
{

ArrayList resultrows = new ArrayList();
AccRow row = null;

for ( Iterator i = publishPartTable. iterator () ; i .hasNext();)
{

row = (AccRow)i.next();
if ( row.id.equals(partId)) resultrows.add(row);

}
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return resultrows;
}

}

A.10 Publisher.java

package accordion;

import accordion.messagetypes.MetaPublication;
import accordion.messagetypes.PartPublication;

import com.onionnetworks.fec.FECCode;
import com.onionnetworks.fec.FECCodeFactory;
import com.onionnetworks.util.Buffer;

import rice.pastry.Id;
import rice.pastry.NodeHandle;
import rice.pastry.NodeId;
import rice.pastry.PastryNode;
import rice.pastry.messaging.Address;
import rice.pastry. leafset .LeafSet;
import rice.pastry.routing.RouteSet;
import rice.pastry.routing.RoutingTable;

import java.security .AlgorithmParameters;
import java.security .MessageDigest;
import java. util .ArrayList;
import java. util .Arrays;
import java. util . Iterator ;
import java. util .Random;
import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;

/∗∗∗
One Publisher object handles publication of one file : meta data and parts.

∗/
public class Publisher extends Thread
{

private static AccordionApplication app;
private Random rand = new Random();

private String filename;
private int m = 4;
private int n = 8∗m;
private int packetsize;

private PastryNode pn;

public Publisher(AccordionApplication aa, String fn, PastryNode pn)
{

app = aa;
filename = fn;
this .pn = pn;

}
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public void run()
{

//byte[] source = new byte[95]; //0 Generate random junk file
//rand.nextBytes(source);

String contents = "In the beginning God created the heaven and the earth. And the earth was
without form, and void; and darkness was upon the face of the deep. And the Spirit of
God moved upon the face of the waters. And God said, Let there be light: and there was

light. And God saw the light, that it was good: and God divided the light from the
darkness. And God called the light Day, and the darkness he called Night. And the
evening and the morning were the first day.";

byte [] source = contents.getBytes() ;

System.out.println("Contents of file to be published: \"" + contents + "\" (length = " + source.length
+ " bytes)");

MetaPublication mp = new MetaPublication(app.appAddress, null); //1 Create a MetaPublication
message with no source

mp.id = new Id(app.hash(filename.getBytes())); //2 Calculate the fileId
byte [] encryptedfile = encrypt(source, mp); //3 Encrypt the file − and set the

PD key in the MetaPublication message

System.out.println("File Id: "+mp.id);

System.out.println("Hexadecimal representation of contents in plaintext: " + HexDump.toHex(source)
+ " (length = " + source.length+ " bytes)");

System.out.println("Hexadecimal representation of encrypted contents: " + HexDump.toHex(
encryptedfile) + " (length = " + encryptedfile.length+ " bytes)");

packetsize = encryptedfile. length / m;

ArrayList pubparts = encode(encryptedfile); //4 Erasure code the file

mp.n = n; //5 Set the MetaPublication
message’s EC params

mp.m = m;

for ( Iterator i = pubparts.iterator () ; i .hasNext() ; ) //6 Build the partIdList
mp.partIdList.add(((DCPart)i.next()) . id) ;

app.forward(mp); //7 Publish meta data
System.out.println("Publisher "+app.getNodeId() + " publishing meta data for file id " + mp.id.

toString());

PartPublication pp;
for ( Iterator i = pubparts.iterator () ; i .hasNext() ; ) //8 Publish parts
{

pp = new PartPublication(app.appAddress, null, (DCPart)i.next());
app.forward(pp);
System.out.println("Publisher " + app.getNodeId() + " publishing part data for part id " + pp.

dcpart.id.toString());
}

}
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//−−−−−−−−−−−−−−−
// ENCRYPTION
//−−−−−−−−−−−−−−−

private byte [] encrypt(byte[] source , MetaPublication mp)
{

byte [] encryptedfile = null;

try
{

Cipher bfc;
MessageDigest md;
SecretKeySpec myTripleDesKey;
byte [] tripleDesKeyData = new byte[8];
byte [] rawKey, hashedKey;

rand.nextBytes(tripleDesKeyData);
myTripleDesKey = new SecretKeySpec(tripleDesKeyData, "DES");
bfc = Cipher.getInstance("DES/ECB/PKCS5Padding"); //Blowfish/CBC/PKCS5Padding
mp.enckey = myTripleDesKey;

bfc . init (Cipher.ENCRYPT_MODE, myTripleDesKey);
encryptedfile = bfc .doFinal(source);

}
catch(Exception e) { System.out.println(e) ; }

return encryptedfile;
}

//−−−−−−−−−−−−−−
// ENCODING
//−−−−−−−−−−−−−−

private ArrayList encode(byte[] encryptedfile)
{

ArrayList parts = new ArrayList();

if (( encryptedfile. length % m∗packetsize) != 0)
{

System.out.println("− ERROR: Length of encrypted file: " + encryptedfile.length + " is not
divisible by m∗packetsize: " + m∗packetsize);

return null;
}

byte [] repair = new byte[n∗packetsize]; //this will hold the encoded file

//These buffers allow us to put our data in them
//they reference a packet length of the file ( or at least will once
//we fill them)
Buffer [] sourceBuffer = new Buffer[m];
Buffer [] repairBuffer = new Buffer[n];

for ( int i = 0; i < sourceBuffer.length ; i++ ) sourceBuffer[i ] = new Buffer( encryptedfile , i∗packetsize
, packetsize ) ;

for ( int i = 0; i < repairBuffer . length ; i++ ) repairBuffer[ i ] = new Buffer( repair , i∗packetsize ,
packetsize ) ;

int [] repairIndex = new int[n];
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for ( int i = 0; i < repairIndex.length ; i++ ) repairIndex[i ] = i ;

FECCodeFactory factory = FECCodeFactory.getDefault();
FECCode fec = FECCodeFactory.getDefault().createFECCode(m,n);
fec .encode( sourceBuffer, repairBuffer , repairIndex ) ; //This is where the magic happens!

// ∗∗∗Naming confusion: the DCPart objects contain actual data
// ∗∗∗when publishing and random byte streams ("dc data") when
// ∗∗∗retrieving
DCPart dcpart;
byte [] part;

for(int i =0; i<n; i++)
{

part = repairBuffer[ i ]. getBytes() ;
dcpart = new DCPart(part.length); // part.length = packetsize!

dcpart.id = new Id(part);
dcpart.data = part;
dcpart.size = part.length;
dcpart.repairIndex = i ;
parts .add(dcpart);
System.out.println("Data for one part: " + HexDump.toHexShort(part) + ", part id: " + dcpart.id.

toString());
}

return parts ;
}

}

A.11 RandNode.java

package accordion;

import accordion.messagetypes.AccordionMessage;
import accordion.messagetypes.MetaPublication;
import accordion.messagetypes.PartPublication;
import accordion.messagetypes.StoredPart;
import accordion.messagetypes.PublishedPart;
import accordion.messagetypes.SeedMessage;

import accordion.tabletypes.PartProviderRow;

import rice.pastry.Id;
import rice.pastry.NodeId;

import java. util .ArrayList;
import java. util . Iterator ;
import java. util .Random;

class RandNode implements AccNode
{

private static double PROB_SUBMIT = 0.4;
private static double PROB_SAVE = 0.1;
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private AccordionApplication app;
private PartProvider partprovider;

public RandNode(AccordionApplication aa, PartProvider pp) { app = aa; partprovider = pp; }

public void handle(AccordionMessage am)
{

NodeId pplnode = null;

if ( am instanceof MetaPublication)
{

MetaPublication mp = (MetaPublication)am;

if ( doSubmit())
{

System.out.println("Random node " + app.getNodeId() + " submitting " + mp.toString() + " for file
id "+mp.id.toString()+" to the meta root node");

app.submit(mp);
}
else
{

System.out.println("Random node " + app.getNodeId() + " forwarding " + mp.toString() + " for file
id "+mp.id.toString()+" to another random node");

app.forward(mp);
}

}

//−−−−−−−−−−−−−−−−−−−−−Part publication−−−−−−−−−−−−−−−−−−−−−

else if ( am instanceof PartPublication)
{

PartPublication partpub = (PartPublication)am;
//System.out.println("Random node " + app.getNodeId() + " received message containing the part " +

partpub.dcpart);
//System.out.println("Node " + app.getNodeId() + " playing RandNode [ " + partpub.toString() + " ]");

if ( doSave())
{

partprovider.handle(partpub);
System.out.println("Node " + app.getNodeId() + " is PartStorer.");

}
else
{

System.out.println("Random node " + app.getNodeId() + " is forwarding a PartPublication
message");

app.forward(partpub);
}

}

else if ( am instanceof StoredPart)
{

StoredPart sp = (StoredPart)am;

if ( doSubmit())
{

partprovider.handle(sp);
}
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else
{

pplnode = app.getRandomPPLNode(sp.partProviderList);
System.out.println("Random ppl node " + app.getNodeId() + " is forwarding StoredPart message

" + sp.dcpart.id.toString());
app.forward(pplnode, sp);

}
}

else if ( am instanceof PublishedPart)
{

PublishedPart pubpart = (PublishedPart)am;
partprovider.handle(pubpart);
System.out.println("Node " + app.getNodeId().toStringFull() + " is now a part provider for " +

pubpart + "\n");
}

}

private boolean doSubmit() { if (Math.random() < PROB_SUBMIT) return true; else return false; }

private boolean doSave() { if ( Math.random() < PROB_SAVE) return true; else return false; }

}

A.12 Seed.java

package accordion;

import java.io . Serializable ;
import rice.pastry.NodeId;

public class Seed implements Serializable
{

public NodeId x, y;
public long value;

public Seed(NodeId x1, NodeId y1) { x = x1; y = y1 ; }

public boolean equals(Seed seed)
{

//System.out.println((this.x.equals(seed.x) && this.y.equals(seed.y) || ( this .x.equals(seed.y) && this.y.
equals(seed.x)) ) ) ;

return ( this .x.equals(seed.x) && this.y.equals(seed.y) || ( this .x.equals(seed.y) && this.y.equals(seed.x)
) ) ;

}

public String toStringFull ()
{

String s = "Seed (x,y): (" + x + ", " + y + "), value: " + value + "\n";
return s ;

}

}
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A.13 AccordionMessage.java

package accordion.messagetypes;
import rice.pastry.Id;
import rice.pastry.NodeId;
import rice.pastry.messaging.Address;
import rice.pastry.messaging.Message;

public abstract class AccordionMessage extends Message
{

public Id id ; //Identifier for an Accordion message, e.g. a fileId or a partId
public NodeId source;

public AccordionMessage(Address address, NodeId source)
{

super(address);
this .source = source;

}

public AccordionMessage(Address address, NodeId source, Id id)
{

super(address);
this .source = source;
this . id = id;

}

public String toString () { return "AccordionMessage"; }

public String toStringFull ()
{

String s = "AccordionMessage:\n";
s += "\tid: " + id;
s += "\tsource: " + source;
return s ;

}
}

A.14 MetaPublication.java

package accordion.messagetypes;

import rice.pastry.Id;
import rice.pastry.NodeId;
import rice.pastry.messaging.Address;

import java. util .ArrayList;
import java. util . Iterator ;
import javax.crypto.spec.SecretKeySpec;

public class MetaPublication extends AccordionMessage
{

public ArrayList partIdList ;
public SecretKeySpec enckey;
public int n , m;



APPENDIX A. JAVA SOURCE CODE FOR ACCORDION 122

public MetaPublication(Address address, NodeId source)
{

super(address, source);
partIdList = new ArrayList();

}

public String toString () { return "MetaPublication"; }

public String toStringFull ()
{

//super.toStringFull() ;

String s = "Meta data includes the following part ids: \n";
for ( Iterator i = partIdList . iterator () ; i .hasNext() ; )
{

s += ((( Id) i .next() ) . toString ()+", ") ;
}

s += "and the encryption key is: " + HexDump.toHex(enckey.getEncoded());
return s ;

}
}

A.15 MetaRNMessage.java

package accordion.messagetypes;

import accordion.tabletypes.MetaRNRow;

import rice.pastry.Id;
import rice.pastry.NodeId;
import rice.pastry.messaging.Address;

import java. util .ArrayList;
import java. util . Iterator ;

public class MetaRNMessage extends AccordionMessage
{

public ArrayList metaRows; //List of MetaRNRows
public boolean isReply = false;
public int returnCode = 0;

public MetaRNMessage(Address address, NodeId source, Id fid) { super(address, source, fid); }

public String toString () { return "MetaRNMessage"; }

public String toStringFull ()
{

super.toStringFull () ;

String s = "MetaRNMessage:\n";
for ( Iterator i = metaRows.iterator(); i .hasNext() ; )
{

s += ( "\tMetaRNRow: " + ((MetaRNRow)i.next()).toStringFull()+"\n");
}
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s += "\tisReply: " + isReply + "\n";
s += "\treturnCode: " + returnCode;
return s ;

}
}

A.16 PartMessage.java

package accordion.messagetypes;

import accordion.DCPart;
import rice.pastry.messaging.Address;
import rice.pastry.Id;
import rice.pastry.NodeId;

public class PartMessage extends AccordionMessage
{

public DCPart dcpart;
public int sessionId;
public int returnCode = 0;
public boolean isReply = false;

public PartMessage(Address address, NodeId src, Id id, int sid)
{

super(address, src , id) ;
sessionId = sid;

}

public String toString () { return "PartMessage"; }

public String toStringFull ()
{

super.toStringFull () ;

String s = "PartMessage:\n";
s += "\tdcpart: " + dcpart.toStringFull () ;
return s ;

}

}

A.17 PartPublication.java

package accordion.messagetypes;

import accordion.DCPart;

import rice.pastry.Id;
import rice.pastry.NodeId;
import rice.pastry.messaging.Address;
import java. util .ArrayList;

public class PartPublication extends AccordionMessage
{
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public DCPart dcpart;

public PartPublication(Address address, NodeId source, DCPart dcp)
{

super(address, source);
dcpart = dcp;

}

public String toString () { return "PartPublication" ; }

public String toStringFull ()
{

super.toStringFull () ;

String s = "PartPublication:\n";
s += "\tdcpart: " + dcpart.toStringFull () ;
return s ;

}

}

A.18 PartRNMessage.java

package accordion.messagetypes;

import accordion.tabletypes.PartRNRow;

import rice.pastry.Id;
import rice.pastry.NodeId;
import rice.pastry.messaging.Address;

import java. util .ArrayList;
import java. util . Iterator ;

public class PartRNMessage extends AccordionMessage
{

public ArrayList partRows; //List of PublishPartRows
public int sessionId;
public boolean isReply = false;
public int returnCode = 0;

public PartRNMessage(Address address, NodeId source, Id pid, int sid)
{

super(address, source, pid);
sessionId = sid;

}

public String toString () { return "PartRNMessage"; }

public String toStringFull ()
{

super.toStringFull () ;

String s = "PartRNMessage:\n";
for ( Iterator i = partRows.iterator() ; i .hasNext() ; )
{
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s += ( "\tPartRNRow: " + ((PartRNRow)i.next()).toStringFull()+"\n");
}

s += "\tisReply: " + isReply + "\n";
s += "\treturnCode: " + returnCode;
return s ;

}

}

A.19 PublishedPart.java

package accordion.messagetypes;

import accordion.DCPart;

import rice.pastry.Id;
import rice.pastry.NodeId;
import rice.pastry.messaging.Address;

import java. util .ArrayList;
import java. util . Iterator ;

public class PublishedPart extends AccordionMessage
{

public DCPart dcpart;
public ArrayList seedList ; //List of SeedRows

public PublishedPart(Address address, NodeId source, DCPart part, ArrayList seedlist)
{

super(address, source);

dcpart = new DCPart(part.size);

dcpart.id = part.id;
dcpart.size = part. size ;
dcpart.repairIndex = part.repairIndex;
seedList = seedlist ;

}

public String toString () { return "PublishedPart"; }

public String toStringFull ()
{

super.toStringFull () ;

String s = "PublishedPart:\n";

s += "\tdcpart: " + dcpart.toStringFull () + "\n";

/∗
for ( Iterator i = partProviderList. iterator () ; i .hasNext() ; )
{

s += ("\tnodeId : " + (( NodeId)i.next()) . toStringFull ()+"\n");
}
∗/
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return s ;
}

}

A.20 StoredPart.java

package accordion.messagetypes;

import accordion.DCPart;
import accordion.Seed;

import rice.pastry.Id;
import rice.pastry.NodeId;
import rice.pastry.messaging.Address;

import java. util .ArrayList;
import java. util . Iterator ;

public class StoredPart extends AccordionMessage
{

public DCPart dcpart;
public ArrayList partProviderList ; //List of NodeId objects
public ArrayList seedList ; //List of Seed objects

public StoredPart(Address address, NodeId source, DCPart dcp, ArrayList ppl, ArrayList seedlist)
{

super(address, source);
dcpart = dcp;
partProviderList = ppl;
seedList = seedlist ;

}

public String toString () { return "StoredPart" ; }

public String toStringFull ()
{

super.toStringFull () ;

String s = "StoredPart:\n";

s += "\tdcpart: " + dcpart.toStringFull () + "\n";

Iterator i = null;

for ( i = partProviderList. iterator () ; i .hasNext() ; )
{

s += ( "\tNodeId: " + ((NodeId)i.next()).toStringFull ()+"\n");
}

for ( i = seedList. iterator () ; i .hasNext() ; )
{

s += ( "\tSeed: " + (( Seed)i.next() ) . toStringFull ()+"\n");
}



APPENDIX A. JAVA SOURCE CODE FOR ACCORDION 127

return s ;
}

}

A.21 SubmittedPart.java

package accordion.messagetypes;

import accordion.DCPart;

import rice.pastry.Id;
import rice.pastry.NodeId;
import rice.pastry.messaging.Address;

import java. util .ArrayList;
import java. util . Iterator ;

public class SubmittedPart extends AccordionMessage
{

public ArrayList partProviderList;

public SubmittedPart(Address address, NodeId source, Id pid, ArrayList ppl)
{

super(address, source, pid);
partProviderList = ppl;

}

public String toString () { return "SubmittedPart"; }

public String toStringFull ()
{

super.toStringFull () ;

String s = "SubmittedPart:\n";

//s += "\tdcpart : " + dcpart.toStringFull () + "\n";

/∗
for ( Iterator i = partProviderList. iterator () ; i .hasNext() ; )
{

s += ("\tnodeId : " + (( NodeId)i.next()) . toStringFull ()+"\n");
}
∗/

return s ;
}

}

A.22 AccRow.java

package accordion.tabletypes;
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import java.io . Serializable ;
import rice.pastry.Id;

public class AccRow implements Serializable
{

public Id id;
public AccRow() {}
public AccRow(Id id) { this.id = id ; }

public String toString () { return "AccRow"; }

public String toStringFull ()
{

String s = "[AccRow] id: " + id;
return s ;

}

}

A.23 MetaRNRow.java

package accordion.tabletypes;

import java. util .ArrayList;
import javax.crypto.spec.SecretKeySpec;
import rice.pastry.Id;
import java. util . Iterator ;

public class MetaRNRow extends AccRow
{

public ArrayList partIdList ;
public SecretKeySpec enckey;
public int n , m;

public String toString () { return "MetaRNRow"; }

public String toStringFull ()
{

super.toStringFull () ;

String s = "[MetaRNRow] ";
for ( Iterator i = partIdList . iterator () ; i .hasNext() ; )
{

s += ( "partId: " + ( Id) i .next() + " , " ) ;
}

s += "enckey: " + enckey;
return s ;

}
}

A.24 PartProviderRow.java

package accordion.tabletypes;
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import accordion.DCPart;
import rice.pastry.Id;
import rice.pastry.NodeId;
import java. util .ArrayList;
import java. util . Iterator ;

public class PartProviderRow extends AccRow
{

public DCPart dcpart;
public ArrayList seedList ; //List of SeedRow objects

public PartProviderRow(int partsize)
{

dcpart = new DCPart(partsize);
seedList = new ArrayList();

}

public String toString () { return "PartProviderRow"; }

public String toStringFull ()
{

//super.toStringFull() ;

String s = "[PartProviderRow] id: " + super.id + "\n";
s += "\t\t\t\t\t\t" + dcpart.toStringFull () + "\n";

/∗
SeedRow row = null;
for ( Iterator i = seedList. iterator () ; i .hasNext() ; )
{

row = (SeedRow)i.next();
s += ("\ t\t\t\t\t\t" + row.toStringFull() + "\n") ;

}
∗/

s += "\n";

return s ;
}

}

A.25 PartRNRow.java

package accordion.tabletypes;

import rice.pastry.Id;
import rice.pastry.NodeId;

import java. util .ArrayList;
import java. util . Iterator ;

public class PartRNRow extends AccRow
{

public ArrayList partProviderList ; //List of nodeIds
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public String toString () { return "PartRNRow"; }

public String toStringFull ()
{

super.toStringFull () ;

String s = "[PartRNRow] id: " + super.id + "\n\t\t\t\t\t\tPPL: ";
for ( Iterator i = partProviderList. iterator () ; i .hasNext() ; )
{

s += (( NodeId)i.next() + " , " ) ;
}

s += "\n";

return s ;
}

}

A.26 SeedRow.java

package accordion.tabletypes;

import rice.pastry.NodeId;

public class SeedRow extends AccRow
{

public long value;

public SeedRow(NodeId nid) { super(nid); }
}


